
Journal of Electrical Engineering,Electronics, Control and Computer Science

JEEECCS, Volume 1, Issue 2, pages 15-20, 2015

Evaluation of Parallelism in Ant Colony

Optimization Method for Numerical Solution

of Optimal Control Problems

H.H. Mehne

Aerospace Research Institute

Tehran, IRAN

hmehne@ari.ac.ir

Abstract – In this paper, the ant colony optimization

(ACO) method for solving optimal control problems is

investigated from parallel processing viewpoint. The

OpenMP implementation of this method is presented

and compared with the MPI implementation. A

numerical example is also given to show the accuracy of

the method and to evaluate the parallel performance.

Keywords: Optimal control; parallel processing; ant

colony optimization; OpenMP

I. INTRODUCTION

The complexity of solving optimal control problem
analytically motivates many researchers in different
fields of science and engineering to develop numerical
methods. Numerical methods for solving optimal
control problems are categorized as direct and indirect
methods. Indirect methods arisen from optimality
conditions known as maximum principle. In such a
method, instead of the original problem, the equivalent
Hamilton Jacobi problem is solved numerically.
Indirect methods are accurate but they have low
convergence rate and finding initial guess for adjoint
variables is difficult. As a recent reference on indirect
methods we may address [1] in which an iterative
method for affine nonlinear optimal control problems
is proposed.

In direct methods, on the other hand, the optimal
control problem is transformed directly to a finite
dimensional optimization problem. This may done by
discretization of the time domain to multi stages or by
direct collocation,where the state or control variable is
parameterized. Larger domain of convergence is
advantage of these methods, while they have low
accuracy with respect to indirect ones. Different
viewpoints of transformation in direct methods
alongside with different optimization methods lead to
various numerical algorithms with different of
theoretical basis, accuracy and convergence rate. In [2]
for example, parameterization of state variable is used.
In [3] measure theory method is applied to drive a
linear programming framework. Ant colony
optimization method (ACO) is used in [4] to solve the
corresponding nonlinear programming problem that
arises from time domain multi staging. This method is
more investigated and developed in [5,6]. One of the
ant colony method's profits is its parallelization nature.
According to this fact, the method of [4] is then

implemented parallel using MPI library in [7]. By this
modification, one can benefit from parallel processing
aspects in solving larger problems faster than serial
case.

The aim of this article is to change the method of
[7] to adopt with OpenMP approach which is another
parallel programming style fitting multiprocessor
/multicore computers. Then, the proposed approach
will be compared with MPI application of the ant
colony method for optimal control problems.
Implementation, parallel performance and accuracy
are explained on a case study.

II. DESCRIPTION OF THE PROBLEM

There are many problems in economics,
aeronautics, robotics, space vehicle and satellite
control which are formulated as optimal control
governing by a system of ordinary dynamical system
like:

 ̇ () (1)

The aim of these problems is to determine input
vector () in such a way that a combination of the
control and related response of (1) as a performance
index like the following be minimized or maximized:

 ∫ (() ())

 (2)

There is also a given initial point in the state space,
for example, () .

A. Multiple-stepping

The described problem has a discretized or
multiple-step form obtained by dividing the time
interval , - into subintervals or steps as follows:

, - , - , - (3)

Where, and . Assume that and
denote respectively the control and related state at .
Then, the original problem is converted to a nonlinear
programming problem as minimization of

∑ (̅)

 (4)

subject to

H.H. Mehne

16

 (̅) (5)

According to the method of integration, ̅ stands
for a vector of and its predecessors. If Euler or
Runge-Kutta method is used, then ̅ includes only .
Starting with , and using an optimization
procedure, one can solve the problem numerically. If
we are satisfied only with grid point values of and
 , then,these values will be found by solving the
above problem. In the method of [8], for example, the
discrete form is reduced to a linear programming
problem. However, when more accurate solution is
required, integration between steps is needed which is
called multi-staging, an example is iterative dynamical
programming method [9].

Discussed in the next section, the ACO method for
solving optimal control problems which has been
proposed in [4] is based also on (4)-(5) formulation
with multi staging.

III. THE ACO METHOD

In the ACO solution of optimization problems, as
in the optimization problem (4)-(5), it is assumed that
the control function is constant on each stage , -
and its value is shown with . The values are
output of dividing the set of prescribed control
interval. Assume that the allowable control values is
, - and is divided to point as * +.
Now, any piecewise constant function like

 () ∑ (, -)

() (6)

is an admissible control function in piecewise
constant form, where is any permutation of
* + and () is the characteristic function.
Indeed, in the divided time-control space, there is a
grid, and a control function of the form of (6) is a step
function in this grid. Such a control function is shown
in Fig.1. In this example, ,
and so on.

It is clear that, any combination of s in (6) leads

to a solution of the problem with different objective
function. In the ACO method, the task of examining of
this different paths in time – control space is done by
some agents called ants. There are a defined number of

ants that taking tours on this space and then evaluate
the vector from (5) and corresponding performance
index from (4). Then, each ant returns its evaluation
and then, an optimum path will result among different
tries of these agents.

According to the optimum solution, the ants trace
on the time – control space will be updated. The
method iterates until a convergence occurs. Below, the
method is described.

A. The serial version

The steps of the main ACO for optimal control

problems are as follows ([7]):

 Initialization: In this step, initial values of

pheromone trails are set. For starting, the values

of pheromone
 corresponding to the

assignment of to for -th ant are set to 1.

 Probabilities Calculation: After calculating of

pheromones, the values of probabilities are

calculated by:

∑

 (7)

which determines the probability for -th ant to

choose for -th subinterval.

 Path Construction: The above probabilities

determine one path in the time-control space or

equivalently a control function.

 Index Evaluation: In this step, the

corresponding initial value problem with control

function as input is solved by Runge-Kutta

method. Then, a numerical estimation for the

performance index is calculated for each ant.

This value is a measure to estimate the fineness

of the resulting control function.

 Finding the Best Solution: After calculating

performance indices for all ants, we will find the

optimum solution among all ants’ results. This is

referred by global optimum.

 Updating Pheromone Trails: First we should

decrease the pheromones by an evaporation to

avoid unlimited accumulation of pheromone

trails. This is done by setting

 ()

 (8)

for all , , . In the above equation, is the

constant evaporation rate. Then, we should increase

the pheromone trails in all solution if the

corresponding time-control is also in the optimum

solution. This will do as:

 ∑

 (9)

Figure 1. A typical control function

Evaluation of Parallelism in Ant Colony Optimization method for numerical solution of Optimal Control Problems

17

where,
 is equal to the inverse of global optimum if

 () in the current optimal solution and in the

solution of ant with optimum performance index. As

the default value for
 is zero, by this method we

increase the probability of choosing good time-control

assignments in the next iterations.

The process will return to the step of probability

construction if we don’t reach to the end of iterations.

The flowchart of serial ACO algorithm for solvingthe

present problem is depicted in Fig.2.
There are many references on evaluating the

computational complexity of the original ACO
algorithm (see [10], for example). Here, we discuss the
complexity computation of the version for optimal
control problems.

With a fixed number of iterations, the upper bound
of the computational complexity of the sequential
method is (), where, and
 stand for number of iterations and number of
ants, respectively. Indeed, the computational
complexity of one iteration of the algorithm with one
ant is of order () .

B. Parallel Version: MPI

As the tasks assigned to each ant are independent
to the tasks of the others, this section including
probabilities construction, path construction, finding
minimum and pheromone update may fulfill in
parallel. The parallel version is presented and analyzed
in [7] with using MPI library implementation. The
related flowchart is depicted in Fig.3.

There are here two communication points in each
iteration. Via a local search, each ant calculates a local
optimum, and then, they send the master node their
local optimums. The master node finds the global
optimum and then sends the updating pheromone
information back to the workers. As reported in [7], on
a test case with 16 processors, the parallel efficiency
reaches to 87%. The MPI approach may applied to
both distributed and shared memory hardware, but the
above mentioned data connection affects the
performance, especially for large-scale problems and
for large number of processors.

In the MPI parallelism, the serial part of the
program has () ()
computational complexity, and the parallel part has
 () complexity which is divided
between processors. Moreover, there is
communication time for send-receive and for

Begin

Discretization

Initialization

Pheromone

Update

End

Counter<Number of Ants?

Yes

Probabilities

Path Construction

Find Optimum

No Counter=Counter+1

Figure 2. Serial ACO flowchart

Figure 3. Parallel ACO (MPI)

H.H. Mehne

18

broadcast which totally is of
order () . Therefore, the overall
computational complexity upper bound is:

 .

/ ().

The above relation shows that the impact of the
communication on the overall complexity. If ,
then the computation cost dominates the
communication. But for the problems with low size,
the effect of the communications will show itself by
decreasing the speed up and related performance.

C. Parallel Version: OpenMP

OpenMPI is an application programming interface
for parallel processing on shared memory
architectures. It uses a portable, scalable model that
gives programmer a simple and flexible interface. The
main program is divided to serial and parallel regions.
When the processors enter the parallel region of the
algorithm, they run instructions as individual threads.

When OpenMP is used to ACO method for solving
optimal control problems, then the phase of sending
local optimums to the master node and giving back the
update information is not required. In the OpenMP
programming, data will be captured from shared
location in the memory. This reduces the cost of
communication with respect to MPI implementation.

Fig. 4 shows the flowchart of the OpenMP
implementation of the method.

When OpenMP parallelization is used,
computations is divided vi threads. Suppose that the

number of processors is . Then complexity of serial
part of the program is () () for
discretization and finding optimum functions. The
parallel part has also ()
complexity which is divided through threads.
Therefore, the total upper bound of the computational
complexity in the case of OpenMP implementation
equals ()which is times less
than the sequential case. Moreover, comparing this
result with complexity of MPI method shows more
expected performance for OpenMP. Consider one ant
one iteration of MPI and OpenMP method. The
corresponding complexities are respectively

 .

 ⁄ / (), and (). So, for larger than

 , the OpenMP method has better performance. It is
also to be mentioned that with MPI, the performance
decrease with increasing , as in the numerical
example of [7], when is increase after 10, then the
seed up curve starts diverging from ideal condition.
This is because of growing with constant in

 .

 ⁄ / () , which causes the domination of

communication term () to the computation one.

IV. NUMERICAL EXAMPLE

In order to examine the method, a benchmark
nonlinear control problem from [11] is used. The
problem is called low thrust rendezvous which deals
with planer relative motion of two particles in a central
gravity field expressed in a rotating frame with
normalized units. The state vector ()
contains radial and tangential displacements and
velocities. The control vector () consists of
radial and tangential accelerations. The dynamic of
this problem in which the rotational and translational
motion of an actuator are coupled is as follows:

 ̇

 ̇

 ̇ () (

)

 ̇ (

)

where √()
 . Initial conditions are

also given as:

 () ()

 () ()

The object of the soft constrained rendezvous
problem is to find the control functions ()
, - , () , - that minimize the
missed distance and implemented thrusts. This is
formulated as the following performance index:

 () ()

∫ (

)

where, and () is a
weight vector forcing the final conditions to be zero.

We solved the above problem with the proposed
method on Aerospace Research Institute's parallel

Begin

Discretization

Initialization

Pheromone

Update

End

Counter<Number of Ants?

Yes

Probabilities

Path Construction

Local Search

Finding Global

Optimum

No

Counter=Counter+1

P
a

ra
lle

l
R

e
g

io
n

Figure 4. Parallel ACO (OpenMP)

Evaluation of Parallelism in Ant Colony Optimization method for numerical solution of Optimal Control Problems

19

processing system having 32 AMD processors with
2.8GHz clock speed.The system has an Infiniband
network with 10 GB/s bandwidth and 0.7
microsecond latency.

The program has been developed with C++
language and was compiled with gcc-4.3.4 with
integrated OpenMP. For MPI library, the OpenMPI
2.0 was used.

Parameters of this numerical simulation are shown
in Table.1.

TABLE I. PARAMETERS

AntNo IterNo.

80 35 0.065 30 5 5

The resulting state vectors are given in Fig.5. The
missed distance vector is (0.004, 0.024, -0.002, -0.063)
which has an acceptable accuracy.

The rate of convergence is also presented in Fig.6,
where the performance index is drawn in terms of
iteration number. It shows that the performance index
decreases in each iteration until converges with an
exponential rate to .

In order to compare the performance of the
proposed method with the method of [7], the problem
with the same parameters has been also solved with
the MPI method. The corresponding speed up graphs
are compared in Fig.7. It is clear that up to 20
processors, the two speed up curves coincide each
other and with the ideal line. By increasing the number
of processors, as expected, the MPI speed up diverges
from its trend while the OpenMP speed up keeps its
increasing behavior. Results for this case with 32
processors show that, the maximum speed up for
OpenMP is 24 and for MPI is 16. Therefore, OpenMP
implementation leads to 50% more speed up and 15%
increment in parallel performance.

Indeed, as stated in part B of section III, the
overcome of communication to computation after 20
processors causes the reduction in the speed up.

V. CONCLUSIONS

The OpenMP parallelization of the ant colony
optimization method for numerical solution of optimal
control problems is presented. Complexity analytical
of serial and two parallel approach is also given. A
numerical example is used to check the accuracy of
the method and to compare parallel performance of
these two approaches. Results show that with
increasing the number of processors, the OpenMP
approach has better performance than the MPI, while
it is restricted to special computer architecture with
multiprocessors. The MPI method, on the other hand,
can be implemented on both shared and distributed
architectures, while its speed up is reduced with
respect to OpenMP because of more data
communications.

For further development of the ACO method for
optimal control problems, extension of the method to
GPU programming is suggested.

REFERENCES

[1] B. Luo, H-N, Wu, T. Huang, and D. Liu, “Data-based

approximate policy iteration for affine nonlinearcontinuous-
time optimal control design,” Automatica, vol. 50, pp. 3281–
3290, 2015.

[2] H.H. Mehne, and A.H. Borzabadi, “A numerical method for
solving optimal control problems using state

Figure 5. The resulting states

Figure 6. Performance index vs. iterations

Figure 7. The speed up curves

H.H. Mehne

20

parametrization”, Numerical Algorithms, vol. 42, no. 2, pp.
165–169, 2006.

[3] H.H. Mehne, M.H. Farahi, and A.V. Kamyad, “MILP
modelling for the time optimal control problem in the case of
multiple targets”, Optimal Control Applications and Methods,
27:77–91, 2006.

[4] A. Borzabadi, and H. Mehne, “Ant colony optimizationfor
optimal control problems”, Journal of Information and
Computing Science, 4(4):259–263, 2009.

[5] A. Borzabadi, M. Heidari, “Evolutionary Algorithms for
Approximate Optimal Control of the Heat Equation with
Thermal Sources ”, Journal of Mathematical Modelling and
Algorithms, vol.11, no.1, pp. 77-88, 2012.

[6] A. P. Pourhashemi, and S. M. Mehdi Ansarey M., “Ant
Colony Optimization Applied to Optimal Energy
Management of Fuel Cell Hybrid Electric Vehicle”,
4thInternational Congress on Ultra Modern

Telecommunications and Control Systems and Workshops,
2012

[7] H.H. Mehne, A. Aliparast, “A Parallel Numerical Method for
Solving Optimal Control Problems”, ICTPE 2015, pp.252-
256, 2015.

[8] H.H. Mehne, “A numerical method for solving linear time-
varying systems based on linear programming”, Applied
Mathematics and Computation, vol. 178, pp. 287-294, 2006.

[9] R. Luss, “Iterative Dynamic Programming”, Chapman &
Hall, CRC, 2000.

[10] F. Neumann, D. Sudholt, C. Witt, “Computational complexity
of ant colony optimization and its hybridization with local
search”, Innovations in Swarm Intelligence, pp. 91-120,
Springer, 2009.

[11] F. Topputo, F. Bernelli-Zazzera, “Approximate Solutions to
Nonlinear OptimalControl Problems in Astrodynamics”,ISRN
Aerospace Engineering, vol. 2013, Article ID 950912, 7
pages, 2013.

http://link.springer.com/search?facet-creator=%22Akbar+Hashemi+Borzabadi%22
http://link.springer.com/search?facet-creator=%22Mohammad+Heidari%22
http://link.springer.com/journal/10852
http://link.springer.com/journal/10852
http://link.springer.com/journal/10852/11/1/page/1
https://scholar.google.com/citations?user=Z5iNnqIAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=koGlq3AAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=LRM_fj0AAAAJ&hl=en&oi=sra
http://link.springer.com/chapter/10.1007/978-3-642-04225-6_6
http://link.springer.com/chapter/10.1007/978-3-642-04225-6_6
http://link.springer.com/chapter/10.1007/978-3-642-04225-6_6

