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Abstract – In this paper, the ant colony optimization 

(ACO) method for solving optimal control problems is 

investigated from parallel processing viewpoint. The 

OpenMP implementation of this method is presented 

and compared with the MPI implementation. A 

numerical example is also given to show the accuracy of 

the method and to evaluate the parallel performance. 
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I. INTRODUCTION 

The complexity of solving optimal control problem 
analytically motivates many researchers in different 
fields of science and engineering to develop numerical 
methods. Numerical methods for solving optimal 
control problems are categorized as direct and indirect 
methods. Indirect methods arisen from optimality 
conditions known as maximum principle. In such a 
method, instead of the original problem, the equivalent 
Hamilton Jacobi problem is solved numerically.  
Indirect methods are accurate but they have low 
convergence rate and finding initial guess for adjoint 
variables is difficult. As a recent reference on indirect 
methods we may address [1] in which an iterative 
method for affine nonlinear optimal control problems 
is proposed. 

In direct methods, on the other hand, the optimal 
control problem is transformed directly to a finite 
dimensional optimization problem.  This may done by 
discretization of the time domain to multi stages or by 
direct collocation,where the state or control variable is 
parameterized. Larger domain of convergence is 
advantage of these methods, while they have low 
accuracy with respect to indirect ones. Different 
viewpoints of transformation in direct methods 
alongside with different optimization methods lead to 
various numerical algorithms with different of 
theoretical basis, accuracy and convergence rate. In [2] 
for example, parameterization of state variable is used. 
In [3] measure theory method is applied to drive a 
linear programming framework. Ant colony 
optimization method (ACO) is used in [4] to solve the 
corresponding nonlinear programming problem that 
arises from time domain multi staging. This method is 
more investigated and developed in [5,6]. One of the 
ant colony method's profits is its parallelization nature. 
According to this fact, the method of [4] is then 

implemented parallel using MPI library in [7]. By this 
modification, one can benefit from parallel processing 
aspects in solving larger problems faster than serial 
case.  

The aim of this article is to change the method of 
[7] to adopt with OpenMP approach which is another 
parallel programming style fitting multiprocessor 
/multicore computers. Then, the proposed approach 
will be compared with MPI application of the ant 
colony method for optimal control problems. 
Implementation, parallel performance and accuracy 
are explained on a case study.  

II. DESCRIPTION OF THE PROBLEM 

There are many problems in economics, 
aeronautics, robotics, space vehicle and satellite 
control which are formulated as optimal control 
governing by a system of ordinary dynamical system 
like: 

 ̇   (     )           (1) 

The aim of these problems is to determine input 
vector  ( ) in such a way that a combination of the 
control and related response of (1) as a performance 
index like the following be minimized or maximized: 

  ∫  (   ( )  ( ))
 

 

    (2) 

There is also a given initial point in the state space, 
for example,  ( )    .   

A. Multiple-stepping 

The described problem has a discretized or 
multiple-step form obtained by dividing the time 
interval ,   - into   subintervals or steps as follows: 

,     - ,     -   ,       -  (3) 

Where,      and     . Assume that    and    
denote respectively the control and related state at   . 
Then, the original problem is converted to a nonlinear 
programming problem as minimization of 

∑ (    ̅    )

 

   

  (4) 

subject to 
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      (    ̅    )  (5) 

According to the method of integration,  ̅ stands 
for a vector of    and its predecessors. If Euler or 
Runge-Kutta method is used, then  ̅  includes only   . 
Starting with      , and using an optimization 
procedure, one can solve the problem numerically. If 
we are satisfied only with grid point values of    and 
  , then,these values will be found by solving the 
above problem. In the method of [8], for example, the 
discrete form is reduced to a linear programming 
problem. However, when more accurate solution is 
required, integration between steps is needed which is 
called multi-staging, an example is iterative dynamical 
programming method [9].  

Discussed in the next section, the ACO method for 
solving optimal control problems which has been 
proposed in [4] is based also on (4)-(5) formulation 
with multi staging.  

III. THE ACO METHOD 

In the ACO solution of optimization problems, as 
in the optimization problem (4)-(5), it is assumed that 
the control function is constant on each stage ,       - 
and its value is shown with   . The    values are 
output of dividing the set of prescribed control 
interval. Assume that the allowable control values is 
,     - and is divided to   point as *          +. 
Now, any piecewise constant function like  

 ( )  ∑    (,       -)

 

   

( ) (6) 

is an admissible control function in piecewise 
constant form, where   is any permutation of 
*       + and  ( )  is the characteristic function. 
Indeed, in the divided time-control space, there is a 
grid, and a control function of the form of (6) is a step 
function in this grid. Such a control function is shown 
in Fig.1. In this example,                  , 
and so on.  

It is clear that, any combination of    s in (6) leads 

to a solution of the problem with different objective 
function. In the ACO method, the task of examining of 
this different paths in time – control space is done by 
some agents called ants. There are a defined number of 

ants that taking tours on this space and then evaluate 
the   vector from (5) and corresponding performance 
index from (4). Then, each ant returns its evaluation 
and then, an optimum path will result among different 
tries of these agents.  

According to the optimum solution, the ants trace 
on the time – control space will be updated. The 
method iterates until a convergence occurs. Below, the 
method is described. 

 

A. The serial version 

The steps of the main ACO for optimal control 

problems are as follows ([7]): 

 Initialization: In this step, initial values of 

pheromone trails are set. For starting, the values 

of pheromone    
  corresponding to the 

assignment of    to    for  -th ant are set to 1. 

 Probabilities Calculation: After calculating of 

pheromones, the values of probabilities are 

calculated by:  

   
  

   
 

∑    
  

   

 (7) 

which determines the probability for  -th ant to 

choose   for  -th subinterval. 

 Path Construction: The above probabilities 

determine one path in the time-control space or 

equivalently a control function. 

 Index Evaluation: In this step, the 

corresponding initial value problem with control 

function as input is solved by Runge-Kutta 

method. Then, a numerical estimation for the 

performance index is calculated for each ant. 

This value is a measure to estimate the fineness 

of the resulting control function. 

 Finding the Best Solution: After calculating 

performance indices for all ants, we will find the 

optimum solution among all ants’ results. This is 

referred by global optimum. 

 Updating Pheromone Trails: First we should 

decrease the pheromones by an evaporation to 

avoid unlimited accumulation of pheromone 

trails. This is done by setting 

   
  (   )   

  (8) 

for all  ,  ,  . In the above equation,       is the 

constant evaporation rate. Then, we should increase 

the pheromone trails in all solution if the 

corresponding time-control is also in the optimum 

solution. This will do as: 

   
     

  ∑    
 

     

   

 (9) 

 
Figure 1. A typical control function 
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where,     
 is equal to the inverse of global optimum if 

 (  )    in the current optimal solution and in the 

solution of ant with optimum performance index. As 

the default value for    
 is zero, by this method we 

increase the probability of choosing good time-control 

assignments in the next iterations. 

The process will return to the step of probability 

construction if we don’t reach to the end of iterations. 

The flowchart of serial ACO algorithm for solvingthe 

present problem is depicted in Fig.2. 
There are many references on evaluating the 

computational complexity of the original ACO 
algorithm (see [10], for example). Here, we discuss the 
complexity computation of the version for optimal 
control problems.  

With a fixed number of iterations, the upper bound 
of the computational complexity of the sequential 
method is  (               ), where,       and 
      stand for number of iterations and number of 
ants, respectively. Indeed, the computational 
complexity of one iteration of the algorithm with one 
ant is of order (  ) . 

 

B. Parallel Version: MPI  

As the tasks assigned to each ant are independent 
to the tasks of the others, this section including 
probabilities construction, path construction, finding 
minimum and pheromone update may fulfill in 
parallel. The parallel version is presented and analyzed 
in [7] with using MPI library implementation.  The 
related flowchart is depicted in Fig.3.  

There are here two communication points in each 
iteration. Via a local search, each ant calculates a local 
optimum, and then, they send the master node their 
local optimums. The master node finds the global 
optimum and then sends the updating pheromone 
information back to the workers. As reported in [7], on 
a test case with 16 processors, the parallel efficiency 
reaches to 87%.  The MPI approach may applied to 
both distributed and shared memory hardware, but the 
above mentioned data connection affects the 
performance, especially for large-scale problems and 
for large number of processors. 

In the MPI parallelism, the serial part of the 
program has  (            )   (        ) 
computational complexity, and the parallel part has 
 (               )  complexity which is divided 
between   processors. Moreover, there is 
communication time for send-receive and for 
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Figure 2. Serial ACO flowchart 

 
 

Figure 3. Parallel ACO (MPI) 
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broadcast which totally is of 
order  (              ) . Therefore, the overall 
computational complexity upper bound is:  

 .             
  

 
/   (              ). 

The above relation shows that the impact of the 
communication on the overall complexity. If    , 
then the computation cost dominates the 
communication. But for the problems with low size, 
the effect of the communications will show itself by 
decreasing the speed up and related performance.  

 

C. Parallel Version: OpenMP 

OpenMPI is an application programming interface 
for parallel processing on shared memory 
architectures. It uses a portable, scalable model that 
gives programmer a simple and flexible interface. The 
main program is divided to serial and parallel regions. 
When the processors enter the parallel region of the 
algorithm, they run instructions as individual threads. 

When OpenMP is used to ACO method for solving 
optimal control problems, then the phase of sending 
local optimums to the master node and giving back the 
update information is not required. In the OpenMP 
programming, data will be captured from shared 
location in the memory. This reduces the cost of 
communication with respect to MPI implementation. 

Fig. 4 shows the flowchart of the OpenMP 
implementation of the method. 

When OpenMP parallelization is used, 
computations is divided vi threads. Suppose that the 

number of processors is  . Then complexity of serial 
part of the program is  (       )   ( ) for 
discretization and finding optimum functions. The 
parallel part has also  (               ) 
complexity which is divided through   threads. 
Therefore, the total upper bound of the computational 
complexity in the case of OpenMP implementation 
equals  (                 )which is   times less 
than the sequential case.  Moreover, comparing this 
result with complexity of MPI method shows more 
expected performance for OpenMP. Consider one ant 
one iteration of MPI and OpenMP method. The 
corresponding complexities are respectively 

 . 
 

 ⁄ /   ( ), and  (    ).  So, for   larger than 

 , the OpenMP method has better performance. It is 
also to be mentioned that with MPI, the performance 
decrease with increasing  , as in the numerical 
example of [7], when   is increase after 10, then the 
seed up curve starts diverging from ideal condition. 
This is because of growing   with constant  in 

 . 
 

 ⁄ /   ( ) , which causes the domination of 

communication term  ( ) to the computation one.  

 

IV. NUMERICAL EXAMPLE 

In order to examine the method, a benchmark 
nonlinear control problem from [11] is used. The 
problem is called low thrust rendezvous which deals 
with planer relative motion of two particles in a central 
gravity field expressed in a rotating frame with 
normalized units. The state vector   (           )  
contains radial and tangential displacements and 
velocities. The control vector   (     )  consists of 
radial and tangential accelerations. The dynamic of 
this problem in which the rotational and translational 
motion of an actuator are coupled is as follows: 

 ̇      

 ̇      

 ̇      (    ) (
 

  
  )      

 ̇         (
 

  
  )      

where   √(    )    
 . Initial conditions are 

also given as: 

  ( )        ( )       

  ( )        ( )       

The object of the soft constrained rendezvous 
problem is to find the control functions   ( )  
,        - ,   ( )  ,        - that minimize the 
missed distance  and implemented thrusts. This is 
formulated as the following performance index: 

  
 

 
 ( )   ( )  

 

 
∫ (  

    
 )

 

 

    

where,      and       (           )   is a 
weight vector forcing the final conditions to be zero.  

We solved the above problem with the proposed 
method on Aerospace Research Institute's parallel 
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Figure 4. Parallel ACO (OpenMP) 
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processing system having 32 AMD processors with 
2.8GHz clock speed.The system has an Infiniband 
network with  10 GB/s bandwidth and 0.7 
microsecond latency.  

The program has been developed with C++ 
language and was compiled with gcc-4.3.4 with 
integrated OpenMP. For MPI library, the OpenMPI 
2.0 was used.  

Parameters of this numerical simulation are shown 
in Table.1. 

TABLE I.  PARAMETERS 

AntNo IterNo. 
          

80 35 0.065 30 5 5 

 

The resulting state vectors are given in Fig.5. The 
missed distance vector is (0.004, 0.024, -0.002, -0.063) 
which has an acceptable accuracy.  

The rate of convergence is also presented in Fig.6, 
where the performance index is drawn in terms of 
iteration number. It shows that the performance index 
decreases in each iteration until converges with an 
exponential rate to          . 

In order to compare the performance of the 
proposed method with the method of [7], the problem 
with the same parameters has been also solved with 
the MPI method. The corresponding speed up graphs 
are compared in Fig.7. It is clear that up to 20 
processors, the two speed up curves coincide each 
other and with the ideal line. By increasing the number 
of processors, as expected, the MPI speed up diverges 
from its trend while the OpenMP speed up keeps its 
increasing behavior. Results for this case with 32 
processors show that, the maximum speed up for 
OpenMP is 24 and for MPI is 16. Therefore, OpenMP 
implementation leads to 50%  more speed up and 15% 
increment in parallel performance.  

Indeed, as stated in part B of section III, the 
overcome of communication to computation after 20 
processors causes the reduction in the speed up. 

 

V. CONCLUSIONS 

The OpenMP parallelization of the ant colony 
optimization method for numerical solution of optimal 
control problems is presented. Complexity analytical 
of serial and two parallel approach is also given. A 
numerical example is used to check the accuracy of 
the method and to compare parallel performance of 
these two approaches. Results show that with 
increasing the number of processors, the OpenMP 
approach has better performance than the MPI, while 
it is restricted to special computer architecture with 
multiprocessors. The MPI method, on the other hand, 
can be implemented on both shared and distributed 
architectures, while its speed up is reduced with 
respect to OpenMP because of more data 
communications.  

For further development of the ACO method for 
optimal control problems, extension of the method to 
GPU programming is suggested.  
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