
Journal of Electrical Engineering, Electronics, Control and Computer Science –

JEEECCS, Volume 4, Issue 14, pages 17-22, 2018

CHDL1: Implementing a simplified version of

the CompactHDL hardware description

language

Florin-Marian Birleanu

Department of Electronics, Computers and Electrical Engineering

Faculty of Electronics, Computer Science and Telecommucations, University of Pitesti

Pitesti, Romania

florin.birleanu@upit.ro

Abstract – A few years ago an extremely compact

hardware description language was proposed. This

paper presents the implementation of a subset of that

language. For this implementation the JavaCC code

generator was used and the resulted application runs on

any operating system having Java installed. The

application receives the description of the desired logic

circuit in the new language and generates the VHDL

source files as well as the user constraints file required

for implementing the circuit in a FPGA board. The

implemented subset of the language allows the user to

easily describe any combinatorial logic circuit based on

NOT, AND and OR gates. It also makes it very easy to

create and use components and to specify pin

constraints.

Keywords – logic design, FPGA, VHDL,

CompactHDL, parsing

I. INTRODUCTION

The paper [1] proposed a compact language for
describing logic circuts. The people working in this
field know very well that the software tools used for
configuring FPGAs [2] are based on complex and
powerful languages such as VHDL. The new language
addressed the fact that VHDL [3] is a very verbose
language and that is allows a very wide range of
constructs (some of which are not synthesizable [4])
which makes it difficult for beginners. CompactHDL
addressed this problems by allowing only a few
instructions and a very compact and easy to learn
syntax [1].

As we are not aware to this date of any
implementation of the CompactHDL language, we
present here the results of the first steps in this
direction. Our main purpose was to validate the idea of
the new language and obtain rapidly a working and
useful implementation. With this in mind, we reduced
the CompactHDL language proposed in [1] (and we
refer to the resulted language using the name CHDL1)
and chose to use a compiler compiler software in order
to automate as much as possible the implementation of
the scanning and parsing parts of the translator [5]. We
discuss all these in the following two sections of this
paper. We show results and discuss their didactic use
in Section IV. In the last section we present the
conclusions of the paper and outline a possible
continuation of this work.

II. LANGUAGES AND TOOLS

We stard by presenting an overview of this work
and of the actors involved in it.

A. Overview

Fig. 1 shows the context in which our work is
placed.

Figure 1. Overview of the process of configuring a FPGA starting

from a CHDL1 description of the logic circuit

The purpose of the language implemented in this
paper is to allow the FPGA designer to configure a
FPGA board without the need to edit VHDL files,
whose syntax is redundant and difficult to memorize.
Instead, the designer can use the compact syntax of
CHDL1 and obtain the required VHDL files with the
aid of the CHDL1 to VHDL translator. This translator
is the work that we present in this paper.

In order to benefit from the existing FPGA
sotfware tools, the resulted files are then imported into
a new Xilinx ISE project and after passing through the
necessary steps (synthesis, design implementation, and
programming file generation) a binary configuration
file is generated. And then this file is downloaded into
the FPGA in order to configure it to function
according to the original circuit description.

B. The input language

As mentioned before, in establishing the
specifications of our input language we started from
the description of CompactHDL in [1]. We kept only
the basic characteristics required for the description of
simple combinatorial circuits and we call the new
(sub)language CHDL1.

 Florin-Marian Birleanu

18

A CHDL1 source file may contain several module
definitions and at most one module instantiation. Each
module represents a (sub)circuit and corresponds to an
entity-architecture pair in VHDL. The module
instantiation may appear only for the top module in the
design. Besides specifying which of the defined
modules is the top module, this instantiation also
specifies how the wires of the top module are
associated to actual pins of the FPGA circuit.

A module definition contains the name of the
module, the names of the inputs and outputs, and the
body of the module. Two types of instructions may
appear inside the body of a module: assignment and
instantiation. In an assignment the result of an
expression is assigned to a wire (corresponding to a
VHDL signal). This wire can be one of the outputs of
the module or an internal (locally defined) wire. The
expression may contain as operands the inputs of the
module, (locally defined) wires, the contants 0 and 1,
and, as operators, & (AND), | (OR) and ~ (NOT). It
can also contain parentheses to group subexpressions.

An instantiation contains the name of the module
to be instantiated and the name of the wires where
each of the inputs and outputs should be connected. A
new wire is defined (implicitly) by its first appearance
either in the lefthand side of an assignment or in the
wires list of a module instantiation.

The grammar (expressed in an approximate
Extended Backus-Naur Form (EBNF – ISO/IEC
14977 standard)) of a CHDL1 source file is shown in
Table I.

TABLE I. THE CHDL1 LANGUAGE GRAMMAR

Start → CHDfile <EOF>

CHDfile → ModuleDefinition* (TopModuleInstantiation

 ModuleDefinition*)?

ModuleDefinition → <NAME> ":" WireList "→" WireList

 "{" Instruction* "}"

TopModuleInstantiation → "(" <NAME> ")" "(" WireList "->"

 WireList ")"

ModuleInstantiation → "(" <NAME> ")" "(" WireList2 "->"

 WireList ")"

WireList → (<NAME> ("," <NAME>)*)?

WireList2 → ((<NAME> | <NUMBER>) ("," <NAME>)*)?

Instruction → Assignment | ModuleInstantiation

Assignment → <NAME> "=" Expression

Expression → Term ("|" Term)*

Term → UnaryOp ("&" UnaryOp)*

UnaryOp → ("~" Operand) | Operand

Operand → <NUMBER> | <NAME> | ("(" Expression ")")

Besides the anonymous (single form) tokens
marked in the grammar with double quotes, the
CHDL1 language contains only three tokens: <EOF>
(the (implicit) end of file marker), <NAME> (module
or wire name), and <NUMBER> (a numerical
constant value). Additionally, a CHDL1 source file
may contain blanks (spaces, tabs and new lines) and
single-line comments (starting with a double slash).

They should be skipped in the scanning phase. The
different types of tokens that can be present in a
CHDL1 file are shown in Table II, together with their
regular expressions.

TABLE II. CHDL1 LEXICAL ATOMS

Token type Name used in

the grammar

Regular expression(s)

Blank (is skipped) " ", "\t", "\r\n\", "\n"

 (space, tab, end of line (for

Windows, Linux and Mac))

Comment (is skipped) <"//" (~["\r", "\n"])*>

 (Starts with double slash and

continues with any string of

characters except the end of

line markers.)

Separator anonymous ":", "->", "{", "}", "(", ")", ","

Operator anonymous "=", "|", "&", "~"

Number <NUMBER> <"0" | "1">

 (One of the strings "0" or "1".)

Identifier <NAME> <["a"-"z", "A"-"Z"] (("_")?

["a"-"z", "A"-"Z", "0"-"9"])*>

 (Starts with a letter and

continues with letters or

numbers (or underscore, but

not on the last position).)

C. The output languages

Our translator will generate VHDL source files for
every module definition found in the CHDL1 file.
Each VHDL file will contain an entity and an
architecture, as sketched in Fig. 2.

Figure 2. The correspondence between a module definition in

CHDL1 and a VHDL entity-architecture pair

If the top module instantiation is present in the
source file, our translator will also generate the
corresponding UCF (user constraints file) file
containing FPGA pin associations for the top module.
For instance, the following top module instantiation:

(Module) (G18, H18 -> J14)

would be translated into:

NET "i1" LOC = "G18";

NET "i2" LOC = "H18";

NET "o" LOC = "J14";

where the module named Module is the one defined in
Fig. 2.

 CHDL1: Implementing a simplified version of the CompactHDL hardware description language

19

D. The software tools

For "compiling" the generated VHDL and UCF
files into a bitstream (BIT) configuration file we will
use Xilinx ISE 9.1i (running on Linux (lubuntu
14.01)). The resulted configuration file will be
transferred to the test board by running (from the
command line, in Linux) the Adept2 application. (The
test board is a Nexys 2, containing a Spartan 3E
XC3S500E FPGA circuit.)

On the other hand, for obtaining the CHDL1
translator we will use the JavaCC code generator [6].
JavaCC is a (command line) software tool that
generates Java source code. Based on the specification
of the desired language tokens and grammar, it
generates Java source code for scanning and parsing
the input according to the specified rules. Additional
Java code can instruct the generated parser to produce
an abstract syntax tree, which can be then traversed in
the main program to generate the desired output files.

The resulted Java source file will be compiled with
the javac compiler (from Java Development Kit (JDK)
7) and the resulted main class file will be run with java
(the Java Virtual Machine (JVM) from the Java
Runtime Environment (JRE)).

III. TRANSLATOR DESIGN AND IMPLEMENTATION

A (formal) language translator is usually composed
of three parts: the scanner, the parser and the code
generator [1, 5]. The first two parts are similar for
most languages and can be easily automated with a
compiler compiler such as JavaCC. Of course, there is
some design effort involved here as well – the effort to
design efficient regular expressions for the tokens of
the desired input language and a proper context-free
grammar for it. (Actually, JavaCC requires a grammar
that is LL(k) [6], which is more restrictive than a
context-free grammar.) The part that can not be
automated (and requires more effort and good
programming skills) is the design of the abstract
syntax tree and the programming of the code
generator.

JavaCC allows us to input all these in a single text
file (i.e., a JavaCC specifications file, having a “.jj”
extension). The construction of this file will result
from combining the three parts of the translator, which
are discussed next.

A. The scanner

Scanning is the stage where symbols that are
redundant or have no meaning (such as blanks and
comments) are removed, while the rest of the symbols
from the input source file are grouped into meaningful
tokens (such as identifiers, numbers, operators and
separators).

Otherwise said, the scanner understands the
microsyntax of the input language. We can specify this
microsyntax with the aid of the JavaCC keywords
SKIP and TOKEN, together with the regular
expressions from Table II:

SKIP: {" " | "\t" | "\r\n\" | "\n"}

SKIP: {<"//" (~["\r", "\n"])*>}

TOKEN: {":" | "->" | "{" | "}" | "(" | ")" | ","}

TOKEN: {"=" | "|" | "&" | "~"}

TOKEN: {<NUMBER: "0" | "1">}

TOKEN: {<NAME: ["a"-"z", "A"-"Z"] (("_")? ["a"-"z",
 "A"-"Z", "0"-"9"])*>}

The scanner skips the specified patterns and
outputs a series of token objects (containing an
identifier for the token type and the actual value of the
found token) that are fed automatically to the parser.

B. The parser

Parsing is the core of language translation. At this
stage the series of tokens found by the scanner is
checked for syntactical corectness and the relevant
tokens are kept and organized into an abstract syntax
tree (AST).

In other words, the parser “understands” the
macrosyntax of the input language. In JavaCC this
macrosyntax is specified in a manner that is very
similar to the ENBF grammar specification of the
language (see Table I). For instance, the first three
variables of the grammar would be specified as
follows:

void Start() : {}

{ CHDfile() <EOF> }

void CHDfile() : {}

{ (ModuleDefinition())*

 (TopModuleInstantiation() (ModuleDefinition())*)?

}

void ModuleDefinition() : {}

{ <NAME> ":" WireList() "->" WireList()

 "{" (Instruction())* "}"

}

However, such a parser (to be invoked in the main
program by calling the method Start) would only be
useful to check that the output of the scanner does not
contain any syntax errors. (Otherwise, exceptions are
thrown.)

We can modify this parser specification such that it
also generates an AST.

C. The abstract syntax tree

In order to design the structure of the AST we look
at the grammar variables (turned into parser methods)
and decide what kind of data each of it should return
(to make sure we retain from the series of scanned
tokens all information that would be relevant for the
code generator). Based on this we can construct a class
inheritance hierarchy for the nodes of the AST. The
results of this design effort are summarized in Table
III.

TABLE III. AST NODE DATA FOR OUR CHDL1 TRANSLATOR

Grammar

variable

Returns

object of

class

Node data Node

parent

class

Start NodeSta

rt

type=ANY (int)

file (Node)

Node

CHDfile NodeCH

Dfile

type=ANY (int)

declarations

(List<Node>)

Node

 Florin-Marian Birleanu

20

ModuleDef

inition

NodeDef

initon

type=DEFINITION (int)

name (String)

inputs (List<String>)

outputs (List<String>)

body (List<Node>)

Node

TopModule

Instantiatio

n

NodeInst

antiation

Top

type=INSTANTIATION

TOP (int)

name (String)

inputs (List<String>)

outputs (List<String>)

Node

ModuleInst

antiation

NodeInst

antiation

type=INSTANTIATION

TOP (int)

name (String)

inputs (List<String>)

outputs (List<String>)

Node

WireList List<String>

WireList2 List<String>

Instruction NodeAssignment or NodeInstantiation Node

Assignment NodeAss

ignment

type=ASSIGNMENT

(int)

left (String)

right (NodeExpression)

Node

Expression NodeBin

Op

op (String)

expr1 (NodeExpression)

expr2 (NodeExpression)

NodeE

xpressi

on

Term NodeBin

Op

op (String)

expr1 (NodeExpression)

expr2 (NodeExpression)

NodeE

xpressi

on

UnaryOp NodeUn

Op

op (String)

expr (NodeExpression)

NodeE

xpressi

on

Operand NodeOp

erand

opd (String) NodeE

xpressi

on

After defining the AST node classes (in the
PARSER section of the JavaCC specifications file) we
can go back to the parser and make the necessary
changes:

Node Start() : { NodeStart nodeS; Node node; }

{ { nodeS = new NodeStart(); }

 node=CHDfile() <EOF>

 { nodeS.file = node; return nodeS; }

}

Node CHDfile() : { NodeCHDfile nodeF; Node node; }

{ { nodeF = new NodeCHDfile(); }

 (node=ModuleDefinition()

 { nodeF.declarations.add(node); })*

 (node=TopModuleInstantiation()

 { nodeF.declarations.add(node); }

 (node=ModuleDefinition()

 { nodeF.declarations.add(node); })*)?

 { return nodeF; }

}

Node ModuleDefinition() : { NodeDefinition nodeD;

 Token tok; String name; List<String> inputs;

 List<String> outputs; Node node; }

{ { nodeD = new NodeDefinition(); }

 tok=<NAME> ":" inputs=WireList() "->"

 outputs=WireList()

 "{" (node=Instruction()

 { nodeD.body.add(node); })* "}"

 { nodeD.name = tok.image; nodeD.inputs = inputs;

 nodeD.outputs = outputs; return nodeD; }

}

The call of this new Start method return the AST
that we can traverse in order to generate the desired
output files (in “.vhd” and “.ucf” format). An example
of a simple CHDL1 source file and its corresponding
AST is shown in Fig. 3.

Figure 3. The abstract syntax tree for the CHDL1 description of

an AND gate

D. The code generator

We call the “Start” method in the “main” method
of our parser class (defined between
PARSER_BEGIN(…) and PARSER_END(…) in the
“.jj” file). Its output is a reference to the root of the
abstract syntax tree.

Starting from the root of the AST we access the list
of declarations from the source file. For each such
declaration that is of type module definition we create
a new VHDL source file. If a top module instantiation
is present, we create for it a “.ucf” file. We check for
redefinition of modules by inserting each module
definition into a hash map. Then, we create a new
“.vhd” file for the module and we fill it with the
definition for the corresponding module entity in
VHDL. Each input or output is a single-bit std_logic
value.

In order to also generate the VHDL architecture
for the module, we create a hash map into which we

 CHDL1: Implementing a simplified version of the CompactHDL hardware description language

21

insert all the wires encountered in the module
definition (starting with the inputs and the outputs). A
new wire is added if a new wire name is encountered
on the left side of an assignment or in the wires list of
an instantiation. Then, for each of these new wires
(that are neither inputs nor outputs of the module) we
add a signal declaration in the architecture of the
VHDL module. For constructing the body of the
architecture in the VHDL file, we replace each
instruction found (in the body of the CHDL1 module)
with the corresponding VHDL construct. For
assignment instructions the translation to VHDL is
straightforward (as we only need to replace the
assignment operator and the CHDL1 logic operators
with the corresponding operators in VHDL).
Instantiations, on the other hand, require a little more
attention (in order to generate a unique label for each
one and to properly generate the port map of the
instantiated entity).

It should be mentioned that we did not check
whether the module being instantiated in the CHDL1
source was also defined there. (Hence, we did not
check that the numbers of inputs and outputs in the
instantiation correspond with the numbers of inputs
and outputs from the definition.) We omitted to do that
in order to facilitate the splitting of the CHDL1
description into multiple source file. This facilitates
also the interoperability between CHDL1 and VHDL,
by allowing the designer to use inside a CHDL1
source file a module defined in a VHDL source file.

As we said earlier, if a top module instantiation is
present in the CHDL1 source file, we must generate a
“.ucf” file for assinging module pins to actual FPGA
pins. In this case, the module definition must be found
in the CHDL1 source file above this instantiation (or
otherwise an error will be generated). Of course, the
numbers of inputs and outputs in this instantiation
must be equal to the numbers of inputs and outputs in
the module definition. A “NET … LOC … ;” line is
added in the “.ucf” file for each of these inputs and
outputs.

IV. RESULTS

A. Compilation and use

The parts presented in the previous section were
put together into a JavaCC specification file (that we
called "CompactHDL.jj" with the following structure:

PARSER_BEGIN(CHDL)

public class CHDL { // The main class of the parser

 public static void main (String args[]) { // Main program

 … // Parser instantiation

 … // Call of Start() method => the AST root

 … // AST traversal and code generation

 }

}

PARSER_END(CHDL)

… // Scanner specifications (Language tokens)

… // Parser specifications (Language syntax)

The resulted file was compiled (in the command
terminal of the operating system) with javacc in order
to generate the missing Java code for the scanner and
the parser:

>> javacc CompactHDL.jj

(We used version 5.0 of JavaCC and the "bin"
folder was added to the system PATH variable.)

The resulted ".java" file were then compiled with
javac (from Java Development Kit (JDK) version 7):

>> javac *.java

This generated in the current folder ".class" files
for the classes in the application. The main class of the
application was then run with the Java Virtual
Machine:

>> java CHDL <circuit.chd

This assumed that the digital circuit description in
the CHDL1 language was present in the "circuit.chd"
text file located in the current folder. As a result of
running this command, ".vhd" files were generated for
every module definition found in the ".chd" file and an
".ucf" file was generated for the instantiation of the top
module.

B. Example of use

As an example, let us see how we could use our
CHDL1 translator for the implementation of a digital
circuit with three inputs that adds the constant "1" to
the binary number from its input. its implementation
based on a demultiplexer is shown in Fig. 4.

Figure 4. The schematic of the "y =x+1" circuit using a 1:8

DeMUX

Figure 5. Implementation of demultiplexers – 1:2, 1:4 and 1:8

In order to make things more interesting, the 1:8
demultiplexer can be constructed from 1:2
demultiplexers, as shown in Fig. 5. Despite the
complexity of the resulting circuit schematic, its
description in CHDL1 is very simple:

// circuit.chd:

Xplus1: x2, x1, x0 -> y3, y2, y1, y0 {

 Florin-Marian Birleanu

22

 (DeMUX18) (1, x2, x1, x0 -> o0, o1, o2, o3, o4, o5, o6, o7)

 y3 = o7

 y2 = o3 | o4 | o5 | o6

 y1 = o1 | o2 | o5 | o6

 y0 = o0 | o2 | o4 | o6 }

DeMUX18: i, s2, s1, s0 -> o0, o1, o2, o3, o4, o5, o6, o7, o8 {

 (DeMUX12) (i, s2 -> sel_up, sel_down)

 (DeMUX14) (sel_up, s1, s0 -> o0, o1, o2, o3)

 (DeMUX14) (sel_down, s1, s0 -> o4, o5, o6, o7) }

DeMUX14: i, s1, s0 -> o0, o1, o2, o3 {

 (DeMUX12) (i, s1 -> sel_up, sel_down)

 (DeMUX12) (sel_up, s0 -> o0, o1)

 (DeMUX12) (sel_down, s0 -> o2, o3) }

DeMUX12: i, s -> o0, o1 {

 o0 = i & ~s

 o1 = i & s }

By running into the terminal the command "java
CHDL <circuit.chd", the following files were
generated: Xplus1.vhd, DeMUX18.vhd,
DeMUX14.vhd, DeMUX12.vhd and Xplus1.ucf. The
contents of three of these files is shown in Fig. 6.

Afterwards, we opened Xilinx ISE 9.1i and created
a new project. We selected the FPGA circuit from the
Nexys 2 board (Spartan3E xc3s500e fg456), added the
generated files to the project and run the "Generate
programming file" command. (Then, we programmed
the resulted "Xplus1.bit" file into the Nexys 2 board
by running the Adept application.)

Figure 6. The contents of three of the files generated by the

CHDL1 translator for the "y=x+1" circuit

C. Discussion

It is not difficult to notice how much the CHDL1
language simplifies the description of basic
combinatorial logic circuits compared to VHDL. The
CHDL1 source file is a minimalistic direct description
(in text form) of the circuit schematic. And it is very
important for novice HDL (hardware description
language) users to see the HDL source code as a
"description of a schematic" , not as a "program". This
makes our translator a handy tool for teaching the
basics of logic circuit design using hardware
description languages.

Our translator is easy to use and runs on virtually
any operating system (with Java installed). It is a

console application (without a graphical user
interface), but it is easy to automate its use through
scripting in the operating system terminal. Also, it is
easy to integrate with a generic source code editor that
has customizable menu commands.

Besides the didactic use of the resulted application
for teaching the fundamentals of logic circuit design
and hardware description languages, our
implementatin of the CHDL1 translator might be a
useful case study for Java programmers who want to
implement a translator for a custom language with the
aid of the JavaCC tool.

ACKNOWLEDGMENT

The author would like to thank his former student
Georgiana-Cosmina Ghita for her help during the
implementation of the translator presented in this
paper.

CONCLUSION

Logic circuit design is the foundation on which
digital computing devices such as CPUs and GPUs
were built. FPGAs play a major role in this field, as
they allow rapid prototyping of digital systems based
on a textual description of the circuit schematic.
However, the languages used for this description are
not very friendly for beginners. This is why we
implemented here a very simple language for
describing combinatorial logic circuits using the three
basic logic gates ("and", "or" and "not"). The language
also enables the designer to easily describe circuits
made of subcircuits. With the aid of Java CC we
implemented a translator from this language (which
we called CHDL1) to the widely used VHDL
language. The resulted application is useful as a tool
for teaching the basics of logic design and hardware
description languages. Its design can also serve as a
case study that highlights and briefly explains and
illustrates the main steps required for implementing a
generic translator.

The work presented here could be further
developed by extending the CHDL1 language such
that it accepts the use of buses and parameters. This
would allow us to describe generic (variable-sized)
multiplexers, decoders, adders and other combinatorial
logic circuits.

REFERENCES

[1] F.M. Birleanu, B.A. Enache, M. Alexandru, “First steps
towards designing a compact language for the description of
logic circuits,” Proceedings of the International Conference
on Communications (COMM), 9-10 June 2016.

[2] G. R. Smith, FPGAs 101: Everything You Need to Know to
Get Started. Elesevier (Newnes), 2010.

[3] B. J. LaMeres, Introduction to Logic Circuits & Logic Design
with VHDL. Springer International Publishing, 2017.

[4] E. Bezerra, D.V. Lettnin, Synthesizable VHDL Design for
FPGAs. Springer International Publishing, 2014.

[5] S.C. Reghizzi, L. Breveglieri, A. Morzenti, Formal languages
and compilation. Springer-Verlag London, 2013.

[6] T. Copeland, Generating Parsers with JavaCC: An Easy-to-
Use Guide for Developers. Alexandria, VA: Centennial
Books, 2013.

