
Journal of Electrical Engineering, Electronics, Control and Computer Science –

JEEECCS, Volume 5, Issue 16, pages 1-4, 2019

Application for Collecting Data from Sensors

and Transmitting Them Through the Network

Alexandru CONSTANTIN, Valeriu Manuel IONESCU

Department of Computer Science

University of Pitesti

Pitesti, Romania

alexandrustelian13@gmail.com, valeriu.ionescu@upit.ro

Abstract – Remote controlling robots is often necessary

when operations need to be executed in a dangerous

environments for humans. The information read from

the monitoring of a real user’s arm movement can be

used, for example, to control the actions of a robotic

arm. The needed sensor information can be taken from

a mobile phone that is equipped with sensors which

provide information about the user actions. The sensor

reading can be easily done using modern software

libraries and the data sending over the internet can be

done with reduced latency using protocols such as

WebSocket. This allows the low cost implementation of a

remote control system over internet. This paper presents

the implementation of a hardware and software control

system for remote robotic arm control using the

Android accelerometer sensor data and the WebSocket

protocol for internet communication.

Keywords-robotic arm; WebSocket; control; Arduino;

sensors

I. INTRODUCTION

The first industrial robot was used in the
automotive industry and it was a massive device built
in the United States in the late 50s [1]. As the
technology improved, the size and cost of robots has
decreased making them useful for automating work in
many domains ranging from manufacturing to
healthcare. The use of robots is advantageous in
environments where the use of human workforce is
not recommended: environments that have safety
hazards, situations that require the execution of
repetitive tasks and places where it is expensive to use
human workforce.

Robots produce safe and precise work; they can
perform applications with more repeatability than the
human workforce while being able to work 24/7 with
the same production speed. Robots only make
mistakes if they are defective and are more accurate
than human labor. Finally robots can be monitored
constantly and a faulty operation can be detected and
corrected in a very short amount of time.

The operation of a robot can be fully automated or
it can be controlled remotely by a human operator. For
the remote operation many existing protocols are be
used but sometimes custom protocols are created,
depending environment conditions (such as distance,
errors, latency). The requirements often include the
need for real time bidirectional communication. Using

the internet infrastructure for sending and receiving
data from the robot can be an advantage as it reduces
the implementation costs and allows long distances.

There are many internet protocols and APIs that
can fulfill these characteristics: WebSocket, HTTP/2
or WebRTC API. Out of these, HTTP/2 [2] is the most
forward looking protocol and it allows the server to
push content, but is currently supported only by 30%
of the websites, while WebRTC API uses multiple
protocols for its implementation, including
WebSocket. For the implementation from this paper
we have used the WebSocket protocol.

WebSocket is a communication protocol that
provides full-duplex communication channels through
a single TCP connection. In this way, after the
connection is established, both server and client can
send messages without a request. WebSocket is an
upgrade of an HTTP connection and is supported by
browsers, allowing system control from a web page.
This protocol was proposed in 2009 and adopted in
December 2011 by Internet Engineering Task Force as
RFC6455 [3]. The established connection can be
secured optionally with Transport Layer Security
(TLS) [4]. The WebSocket protocol defines a prefix
ws:// to indicate a WebSocket connection and wss:// to
indicate a WebSocket Secure connection, respectively.
WebSocket is used in games, applications that need
frequent updates, multi-user applications and robot
control [5, 6].The advantages of this protocol over the
classic HTTP connection are a reduced traffic due to
the header size and a reduced number of connections.
The implementation problems usually relate to the
change of the traffic pattern compared to classic
HTTP, which may affect the results of network traffic
monitoring tools.

In related literature, many low cost solutions for
robotic arm remote control were found, using different
communication protocols, but many focus on short
distance control:

- [10] uses a Arduino system to control the robotic
arm while the commands are sent via an infrared
remote. The disadvantage is that the communication is
unidirectional and the advantage is that the cost of the
hardware is very small.

- [11] uses Arduino Nano as the Bluetooth
transmitter board and an Arduino Uno as the robot
attached receiver. The hand movement is monitored

mailto:alexandrustelian13@gmail.com
mailto:valeriu.ionescu@upit.ro

Alexandru CONSTANTIN, Valeriu Manuel IONESCU

2

by a GY-521 6DOF MPU6050 3 Axis Gyroscope with
Accelerometer Module while the finger flexing
information is taken from a Spectra Symboflex
Sensor. The design is more complex but it does not
offer the flexibility of transmitting the data over longer
distances (internet). Similarly, in [12] the Arduino
ATMEGA-328 micro-controller is via android app
using a Bluetooth HC 05 Module.

- [13] is also using an Arduino Clone (RevIO) that
communicates using two XBee Modules (one connected
to the robotic arm and the other connected to a laptop).
Again, the remote control via internet is not insured.

- Project [14] is using Android to control the robotic
arm and the hardware that makes the communication
possible is the 1Sheeld (Android shield for Arduino).
The disadvantage is the use of dedicated hardware to
connect the Android platform to the robot.

This paper presents the implementation of a
control system for an Arduino powered robotic arm
that uses accelerometer data from and Android mobile
device. The Android server communication is made
via WebSocket while the Server – robot
communication uses a RS232 serial line. This allows
reduced latency in the local control and the possibility
to control the application form anywhere on the
internet. This remainder of the paper is structured as
follows: In Chapter II the system architecture is
presented, in Chapter III the results and various
implementation problems are presented, while the
Conclusions will discuss future project improvements.

II. SYSTEM ARCHITECTURE

The system is composed of three components, as
illustrated in Fig. 1:

-the Android application developed in Java that
reads the user acceleration sensor information or the
commands that are selected;

-the code running on the Arduino platform
connected to the robot, that reads the serial line
commands from the server commands and controls the
robot motors.

-the server (written in Java), that creates the
WebSocket communication with the Android application
on one hand and gives commands to the robot via serial
lines on the other hand. The Java Simple Serial Connector
library was used for the serial line communication [7].

Figure 1. The system’s architecture

III. SYSTEM IMPLEMENTATION

In the following section, the implementation of the
various components is discussed and the problems that
had to be resolved.

A. The Android application

The application was created in Android Studio using
the Java programming language. To access the sensors the
class SensorManager was used. The Sensor framework is
part of the android.hardware package and includes the
following classes and interfaces:

 SensorManager - Used to create a service

instance for sensors. This class provides several methods

for accessing and listing sensors, recording and

unsubscribing sensors events listeners and getting

orientation information and offers means to report sensor

accuracy, set data acquisition rates, and sensors calibration.

 Sensor - this class provides different methods

to determine the capabilities of a sensor and is used to

create an instance of a specific sensor.

 SensorEvent - The system uses this class to

create an event object of the type sensor, which provides

information about a sensor event. An event object of the

sensor type includes the following information: raw sensor

data, sensor type that generated the event, data precision

and time stamp for the event.

 SensorEventListener - this interface can be

used for receiving notifications (sensor events) when the

sensor values change or when sensor accuracy changes.

The OKHttp library [8] was used to communicate
with the server using WebSocket, library for Android
2.3 and above that was initially designed to work for
HTTP, HTTPS and HTTP/2. Since version 3.5 the
OkHttp library supports the WebSocket protocol. The
Android application will send short messages that
actually represent hand robot commands. The data
encapsulated in the packets was designed to have two
components: the servomotor identifier and the number
that identifies the position of the servomotor. These
are enough to control each robot servo individually.

 In order to implement the interface, the graphical

design tools form Android Studio were used in a

Constraint Layout. The interface has buttons to

control the individual motors, and a single button to

read the movement from the accelerometer. The

A+/A-, B-/B- buttons were used to send manual

commands through the WebSocket interface, for

testing purpose. The Android application interface is

presented in Fig. 2.

 The application operates by first establishing from

the client a WebSocket connection to the server

through a process known as WebSocket handshake.

This process begins with the client sending an HTTP

request common to the server. An upgrade header is

included in this request that informs the server that

the client wants to establish a WebSocket connection.

WebSocket implemented in this application uses the

ws:// URI schema, meaning unsecure connection.

User

Server

Robotic

arm

Internet

Application for collecting data from sensors and transmitting them through the network

3

Figure 2. The Android application interface

To send a message via the WebSocket connection,
it is necessary to call send() on the WebSocket
instance. The parameter will be the data that is wanted to
be transmitted (whether it is a message or a String, as in
a WebSocket channel, both text data and binary data can
be sent). To detect the rotation of the phone used to
move the robot the data from accelerometer was used. It
offers with double data about the 3 axes of the phone x,
y, and z. So if there is a movement on the x axis I can
say that the phone is moving left or right, and if the
phone detects a motion on the y-axis, that means that the
phone has a back and forth motion. The sending of data
is only made is the “Foloseste senzorul” button is
pressed in the user interface (Fig. 2).

B. The server application

The Java server application uses the
org.java_websocket class in order to support the ws
communication. The implementation is:

ServerSocket sv = new ServerSocket(80);

Socket client = sv.accept();

InputStream in = client.getInputStream();

OutputStream out = client.getOutputStream();

out.write(response, 0, response.length);

The server will relay the messages to the Arduino
device using the serial line encapsulation. The
implementation is as follows:

SerialPort serialPort = new SerialPort("COM5");

serialPort.openPort();

serialPort.setParams(2000000,SerialPort.DATABI
TS_8, SerialPort.STOPBITS_1,
SerialPort.PARITY_NONE);

serialPort.writeBytes(mesaj.getBytes()));

As seen in the code above, the serial
communication speed is set as high, because the
distance between the system and the robot was very
small (< 1m). If the distance increases, then the
communication speed will have to be reduced.

C. The robot control application and robot

hardware implementation

The center of the robot implementation is the

actuator (of type TowerPro MG996R [9]) which has a

three-pin female connector: power, ground and PWM

signal. The power line is connected to a separate

power source as the Arduino cannot give enough

power to move the servomotors, while the PWM line

is connected to the Arduino pins (Fig. 3).

The robot uses six servomotors: one that controls

the base rotation, two that control the arm extension

and two that control the arm rotation and finally one

that controls the robot tip. This gives to the robot 6

freedom degrees (Fig. 4).

Finally the robot control is done by the Arduino

board, that has the purpose to send the commands

received form the server to the six motors. The

Arduino servo library was used for the

implementation. For sending commands the

myservoA.attach(x) was used to attach the Servo

objects to a specific pin. After this, the

myservoA.write(y) is used to rotate the servo motor.

While the WebSocket only gives the bidirectional

communication channel, the messages of the

communication protocol used between the Android

system and the server had to be implemented. Also, a

WebSocket ping/pong message had to be implemented

in order to insure that the Android client was still

connected to the server. Other implementation problems

were mainly related to the sensor reading. When the

accelerometer was used to control the robot, a certain

hysteresis was necessary to be implemented as the data

values can vary around certain values because on the

normal (small) hand movements. This means that the

control had to be implemented as a detection of quick

(deliberate) hand movements and therefore it was

necessary to detect a significant change in the device’s

position but it was also necessary to prevent sending

commands to the robot multiple times. The acceleration

level necessary to detect the voluntary movement of the

user’s hand with no error (false alerts) was chosen to be

2 through testing (Fig. 5). Also, a delay was

implemented after each command was sent, as to prevent

multiple commands.

Other problems that had to be solved regarded the

correct handling of various network related operations

(such as connection problems, errors, disconnects) or

timing problems because after sending a command

the serial line needs time to serialize the data and the

robot needs time to execute it (meaning that a

command delay is necessary to be implemented for

each command to have time to be executed).

Figure 3. The actuator pins

Alexandru CONSTANTIN, Valeriu Manuel IONESCU

4

Figure 4. The six servomotor robot controlled by the system

Figure 5. The evolution of the sensor x axis when tilted to the

right has 2 as the level needed to trigger the robot command

sending

 Finally, a reset command had to be implemented

so that when the user presses a reset button, the robot

reverts to the initial position. The command includes

reset positions for all six servomotors. As it is

possible to continuously command the robot to move

in one direction, a limit had to be implemented, in

order to avoid any uncontrolled behavior when the

robot receives a command that signals one more step

even if the maximum value has been reached. Finally,

for the purpose of saving the robot movement (for

later playback and analysis), all the commands were

record and stored in a SQLite database in Android.

IV. CONCLUSIONS

This paper presents the implementation of a
control system for a hand robot using the WebSocket
protocol. Compared to existing solutions, the
implementation problems of robot control through
internet connectivity are discussed. The results were
presented and various implementation challenges were
discussed.

The usage of WebSocket protocol for robot control
over internet is simple to implement and has the
advantage there are no major changes when switching
from HTTP and firewalls will allow the traffic without
special rules. The main problems with the
implementation are: the need to increase the serial line
speed for decreasing command latency via the serial

line (between the server and the Arduino board on the
robot); the need to implement a ping/pong protocol to
let the server know that the client is still present;
setting a motion detection level for the Android
acceleration sensor data application (because of the
inherent movement of the user’s hand).

In the future we also intend to implement the
robotic hand control with WebSocket, as Arduino has
libraries that provide this support. This will also
mitigate the problem that the server system had to be
placed very close to the robotic hand, in order to have
a high serial communication speed. In the future better
motion detection will have to be implemented, as in
the current version only abrupt hand movements are
detected.

REFERENCES

[1] Nof, Shimon Y (1999). Handbook of Industrial Robotics (2nd
ed.). John Wiley & Sons. pp. 3–5. ISBN 0-471-17783-0

[2] W3Techs, "Usage of HTTP/2 for websites". World Wide Web
Technology Surveys. Retrieved October 17, 2018.

[3] IETF, WebSocket, RFC 6455

[4] IETF, Transport Layer Security, RFC 5246

[5] ROS CONTROL CENTER, web,
https://github.com/pantor/ros-control-center, Accessed:
2018.10.10

[6] Sudar Muthu, Using Websockets and Android to Control
Robots in Realtime, Nov 2, 2012,
https://www.slideshare.net/Sudar/using-websockets-and-
android-to-control-robots-in-realtime, Accessed: 2018.10.10

[7] Official jSSC (Java Simple Serial Connector) repository,
https://github.com/scream3r/java-simple-serial-connector,
web, Accessed: 2018.10.10

[8] Square, Inc “An HTTP & HTTP/2 client for Android and Java
applications“, web, http://square.github.io/okhttp/, Accessed:
2018.10.10

[9] Handson Technology, MG996R High Torque Metal Gear
Dual Ball Bearing Servo, Datasheet, web:
http://www.handsontec.com/dataspecs/motor_fan/MG996R.p
df, Accessed: 2018.10.10

[10] –, “Remote Controlled Robotic Arm”, web,
https://www.instructables.com/id/remote-controlled-robotic-
arm/, Accessed: 2018.10.10

[11] –, ”Wave Your Hand to Control OWI Robotic Arm... No
Strings Attached”, Web,
https://www.instructables.com/id/Wave-your-hand-to-control-
OWI-Robotic-Arm-no-strin/, Accessed: 2018.10.10

[12] Sharun Mendonca, Khalid Mohammad Zulqurnain, K. M.
Abdul Razack, Mohammed Zohair, Rolwin Wilston Carlo,
Multi Functional Android Controlled Robotic Arm for
Drilling, Cutting and Cleaning Application, Journal of
Mechanical Engineering and Automation, Vol. 7 No. 3, 2017,
pp. 89-93. doi: 10.5923/j.jmea.20170703.06.

[13] –, ”Make Wired Robotic Arm Edge to Wireless With DIY
Arduino + XBee”, web,
https://www.instructables.com/id/Make-Wired-Robotic-Arm-
Edge-to-Wireless-with-DIY/, Accessed: 2018.10.10

[14] Ammar Atef Ali, "CONTROL ROBOT ARM WITH YOUR
ANDROID PHONE", March 1, 2016, web,
https://create.arduino.cc/projecthub/ammaratef45/control-
robot-arm-with-your-android-phone-adbfb3, Accessed:
2018.10.10

https://github.com/pantor/ros-control-center
https://www.slideshare.net/Sudar/using-websockets-and-android-to-control-robots-in-realtime
https://www.slideshare.net/Sudar/using-websockets-and-android-to-control-robots-in-realtime
https://github.com/scream3r/java-simple-serial-connector
http://square.github.io/okhttp/
http://www.handsontec.com/dataspecs/motor_fan/MG996R.pdf
http://www.handsontec.com/dataspecs/motor_fan/MG996R.pdf
https://www.instructables.com/id/Wave-your-hand-to-control-OWI-Robotic-Arm-no-strin/
https://www.instructables.com/id/Wave-your-hand-to-control-OWI-Robotic-Arm-no-strin/
https://www.instructables.com/id/Make-Wired-Robotic-Arm-Edge-to-Wireless-with-DIY/
https://www.instructables.com/id/Make-Wired-Robotic-Arm-Edge-to-Wireless-with-DIY/
https://create.arduino.cc/projecthub/ammaratef45/control-robot-arm-with-your-android-phone-adbfb3
https://create.arduino.cc/projecthub/ammaratef45/control-robot-arm-with-your-android-phone-adbfb3

