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Abstract – In order to evaluate binary strings generated 

by cryptographic applications, for randomness and 

unpredictability, an instrument may be the statistical 

tests. Because in terms of probability it cannot be 

assumed that these statistical tests are completely 

reliable/effective, they must be tested for uniformity, 

scalability, and consistency, searching for any kind of 

correlation that might affect their desired properties 

and their results. In this paper we proposed a systematic 

approach of testing and analyzing results concerning the 

NIST statistical test suite, determining dependencies 

between tests, and finding patterns for the evolution of 

these dependencies according to specific factors, such as 

binary string length. 

Keywords-Statistical Test, Correlation Coefficient, 

Sample Length 

I. INTRODUCTION 

As the National Institute of Standards and 
Technology, NIST, asserts in the argument for its 
statistical test suite ([1], [2]), there is a “need for 
random and pseudorandom numbers”, and this need 
“arises in many cryptographic applications”, that is, in 
cryptographic keys or protocols, in digital signatures, 
or in authentication protocols. 

In order to evaluate binary strings generated by 
cryptographic applications, for randomness and 
unpredictability, an instrument may be the statistical 
tests. Because in terms of probability it cannot be 
assumed that these statistical tests are completely 
reliable/effective, they must be tested for uniformity, 
scalability, and consistency, searching for any kind of 
correlation that might affect their desired properties 
and their results. This study started from the idea of 
doing randomness testing of cryptographic algorithms 
by using NIST statistical test suite more: 

 Reliable/Effective 

 Practical/Efficient. 

Accordingly, the goal was searching for any 
correlation that might exist between the NIST tests. 
The experimental procedure implied all 15 tests (being 
aware of the criticisms given by [3] to [6], especially 
about the Discrete Fourier Transform Test) contained 
by this suite. 

The overall investigation consisted of two phases: 

 A systematic application of NIST tests to 
pseudorandom binary strings, previously 
generated by using a well-known 
cryptographic algorithm such as AES 

 A statistical evaluation of the results based on 
Galton-Pearson formula [7], in order to find 
any mathematical relationship between NIST 
tests. 

Finally, all experiments and analysis were resumed 
by this paper which essentially contains 4 sections as 
follows: Section 1 is for an introduction to the topics, 
Section 2 makes a brief presentation of the theoretical 
basis, Section 3 details the experimental procedure, 
and Section 4 is for conclusions and future topics of 
our research on the field. 

II. THEORETICAL BASIS 

A. Correlation evaluation 

The result of the statistical tests, denoted as P-
value, is a measure of randomness which ranges 
between [0,1], and is calculated by a specific formula 
given for each test by NIST’s specification. With a P-
value close to 1, we have a high level of randomness. 

The Galton-Pearson “product-moment correlation 
coefficient” [7], calculated by formula (1), evaluates 
pairs of P-values, that is, X and Y, and produces a 
result which ranges between [-1, 1]. A correlation of 
+1 means that there is a perfect positive linear 
relationship between variables, or a direct proportion, 
while a correlation of -1 means that there is a perfect 
negative linear relationship between them, or an 
inverse pro-portion. With a correlation which is close 
to the absolute value of 1, we have a strong 
relationship between the variables. In case of a 
correlation close to 0, the variables are independent. 
The reciprocal is not always true [8]. 
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B. Other approaches 

In literature, there are a few works regarding 
correlation between NIST statistical tests. Especially 
[3] has the same approach as ours, but also some other 
by the same authors ([9] and [10]) studied this 
correlation with focus on the proportion of regions in 
which P-values are lower than 0.01 for each test, or 
defining correlation by examining the distribution of a 
test's results on a region where another test's results are 
lower than 0.01. 

Coming from the same authors, the study of [11] 
examines dependencies of 9 statistical tests included in 
the NIST test suite and found the same dependencies 
as for [3]. 

Another approach is [12] where P-values are 
calculated by using 2 different sets and for each 
sequence the difference between 2 P-values 
corresponding to 2 different tests is calculated and 
found according to the distribution of difference 
correlation. 

Two of our preceding papers, [13] and [14], 
investigated and proposed numerical methods for 
solving three open problems regarding the NIST 
statistical test suite: 

 Estimating and deriving analytical formulas 
for computing the probability of accepting a 
false hypothesis for five of the NIST tests (i.e. 
Frequency Test, Frequency Test within a 
Block, Runs Test, Discrete Fourier Transform 
(Spectral), and Serial Test) 

 Finding the number of minimum sample size 
to achieve a given probability error 

 The (in)dependence of statistical tests. 

This paper continues our studies from [13] and 
[14], approaching systematically the (in)dependence of 
statistical tests. 

III. EXPERIMENTAL WORK 

A. Experimental method 

For the evaluation of correlation between statistical 
test results, the chosen method was Galton-Pearson 
formula [7], that is, the correlation coefficient. In order 
to produce reliable/effective results and conclusions, 
this was done by calculating and analyzing 4 sets of 
coefficients corresponding to the application of NIST 
statistical tests over 100 binary samples of different 
lengths (i.e. 1, 2, 5, 6 million bits) (see Appendix A). 

The number of samples was chosen according to 
NIST’s specifications (see Appendix A) where the 
only value of minimum 200, that is, for Linear 
Complexity Test, was intentionally unaccomplished 
due to the fact that this test works with a fixed number 
of 500 substrings. Hence, this limit in fact was 
accomplished. 

As asserted in Section 1, a pseudorandom binary 
string of approximately 1 billion bits was previously 
generated by using an FPGA loop implementation of 
AES-128 encryption [15], a well-known symmetrical 
cryptographic algorithm, with a “1h” (i.e. hex value) 
unique key. On the loop, every encrypted output 
binary sequence was taken and applied as an input to 
the next encryption. Knowing that for one encryption 
simulation, that is, for 128 bits, it took 240 ns, we had 
to run a 1.875 s simulation (i.e. 7,812,500 iterations) in 
order to produce a 1-billion-bits binary string. This 
simulation was done by using Xilinx ISE Design Suite 
(shareware version 14.7) and one of the authors 
previous hardware implementation of AES-128 [16], 
on a Xilinx Spartan-6 FPGA platform (Fig. 1). 

Figure 1. Xilinx Spartan-6 FPGA platform 

With the intention to make experiments 
practical/efficient, the NIST test suite (version 2.1.2) 
was implemented according to NIST’s specifications 
on five Linux OS (Ubuntu version 18.04.1 Desktop 
64-bit) virtual machines (4 processors, 4 GB of RAM), 
all running on a single physical desktop PC (Intel I7 
Quad Core, 16 GB of RAM). The virtual machines 
were created with the VMWare Workstation software 
(shareware version 12.5.5). 

All 15 tests were used, 3 of them being treated like 
double tests as follows: 

 Cumulative Test, denoted as T3, consists of 
Forward (T3F) and Reverse (T3R) tests; 

 Non Periodic Template Matchings Test, 
denoted as T8, was approached as for 2 binary 

sequences, “ 000000001”  (T8.1) and “
111111110” (T8.2), respectively; 

 Serial Test, denoted as T14, was treated like 2 
tests (T14.1 and T14.2) corresponding to 2 P-
values produced by this test. 

Therefore, instead of 15, we considered 18 
individual tests listed by Table I. 

As mentioned before, we chose to use samples of 4 
different lengths in order to check any possible 
dependence between correlation coefficients and the 
sample length. Moreover, the option of using 100, as a 
unique number of samples, was motivated by the 
necessity of having uniform results, such that they 
could be compared. In case we did not comply with 
this requirement, the comparison would not be 
possible. 
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TABLE I.  USED TESTS LIST 

Test  

No. 

Test  

Name 

Test  

Variants 

T1 Frequency (Monobit)  

T2 Frequency Test within a Block  

T3 Cumulative Sums (Cusums) T3F; T3R 

T4 Runs  

T5 Longest-Run-of-Ones in a Block  

T6 Binary Matrix Rank  

T7 Discrete Fourier Transform (Spectral)  

T8 Non-overlapping Template Matching T8.1; T8.2 

T9 Overlapping Template Matching  

T10 Maurer's “Universal Statistical”  

T11 Approximate Entropy  

T12 Random Excursions  

T13 Random Excursions Variant  

T14 Serial T14.1; T14.2 

T15 Linear Complexity  

 

In order to relieve certain correlations between the 
results of statistical tests and to give reliable/effective 
conclusions, we only took into consideration 
correlation coefficients greater than or equal to 0.5 
(similarly to [3]), avoiding to set too high limits and to 
neglect any dependencies with lower coefficients that 
might occur. 

B. Experimental results 

The correlation coefficients resulted from the 
application of NIST statistical tests on the FPGA loop 
implementation (Fig. 2), following the procedure 
described by the preceding subsection, are contained 
by Table II, III, IV, and V (with a minimized form that 
shows only actual correlations between tests, all other 
values being irrelevant, showing weak or no 
dependencies between tests), for a sample length of 1, 
2, 5, and 6 million bits. 

Figure 2. FPGA loop implementation of AES-128 

The table cells that are filled with grey color 
contain correlation coefficients with values that exceed 
0.5, showing dependence (correlation) between a test 
situated on the horizontal line and one on the vertical. 

For Table II (M = 1,000,000 bits) we found (2): 

T1-T3F = 0.738; 

T1-T3R = 0.722; 

T3F-T3R = 0.765;  (2) 

T12-T13 = 0.725; 

T14.1-T14.2 = 0.690. 

 

For Table III (M = 2,000,000 bits) we found (3): 

T1-T3F = 0.790; 

T1-T3R = 0.767; 

T3F-T3R = 0.705;  (3) 

T12-T13 = 0.623; 

T14.1-T14.2 = 0.690. 

For Table IV (M = 5,000,000 bits) we found (4): 

T1-T3F = 0.716; 

T1-T3R = 0.733;  (4) 

T3F-T3R = 0.637; 

T14.1-T14.2 = 0.746. 

For Table V (M = 6,000,000 bits) we found (5): 

T1-T3F = 0.745; 

T1-T3R = 0.753;  (5) 

T3F-T3R = 0.711; 

T14.1-T14.2 = 0.679. 

TABLE II.  CORRELATION COEFFICIENTS FOR M = 

1,000,000 BITS 

Tests T1 T3F T3R T12 T13 T14.1 T14.2 

T1 1 0.738 0.722 0.287 0.248 0.031 -0.002 

T3F 0.738 1 0.765 0.371 0.313 -0.087 -0.245 

T3R 0.722 0.765 1 0.235 0.180 -0.049 -0.149 

T12 0.287 0.371 0.235 1 0.725 -0.010 -0.037 

T13 0.248 0.313 0.180 0.725 1 -0.011 -0.079 

T14.1 0.031 -0.087 -0.049 -0.010 -0.011 1 0.690 

T14.2 -0.002 -0.245 -0.149 -0.037 -0.079 0.690 1 

TABLE III.  CORRELATION COEFFICIENTS FOR M = 

2,000,000 BITS 

Tests T1 T3F T3R T12 T13 T14.1 T14.2 

T1 1 0.790 0.767 0.286 0.324 0.022 -0.052 

T3F 0.790 1 0.705 0.421 0.348 -0.092 -0.116 

T3R 0.767 0.705 1 0.236 0.201 -0.043 0.033 

T12 0.286 0.421 0.236 1 0.623 0.128 0.036 

T13 0.324 0.348 0.201 0.623 1 0.049 -0.098 

T14.1 0.022 -0.092 -0.043 0.128 0.049 1 0.690 

T14.2 -0.052 -0.116 0.033 0.036 -0.098 0.690 1 

TABLE IV.  CORRELATION COEFFICIENTS FOR M = 

5,000,000 BITS 

Tests T1 T3F T3R T12 T13 T14.1 T14.2 

T1 1 0.716 0.733 0.199 0.139 -0.123 -0.111 

T3F 0.716 1 0.637 0.267 0.099 -0.107 -0.117 

T3R 0.733 0.637 1 0.086 0.014 -0.164 -0.106 

T12 0.199 0.267 0.086 1 0.498 -0.056 -0.135 

T13 0.139 0.099 0.014 0.498 1 -0.013 -0.023 

T14.1 -0.123 -0.107 -0.164 -0.056 -0.013 1 0.746 

T14.2 -0.111 -0.117 -0.106 -0.135 -0.023 0.746 1 

TABLE V.  CORRELATION COEFFICIENTS FOR M = 

6,000,000 BITS 

Tests T1 T3F T3R T12 T13 T14.1 T14.2 

T1 1 0.745 0.753 0.193 0.372 0.03 -0.018 

T3F 0.745 1 0.711 0.166 0.329 0.089 0.08 

T3R 0.753 0.711 1 0.003 0.226 0.085 0.084 

T12 0.193 0.166 0.003 1 0.474 -0.08 -0.119 

T13 0.372 0.329 0.226 0.474 1 0.03 -0.007 

T14.1 0.03 0.089 0.085 -0.08 0.03 1 0.679 

T14.2 -0.018 0.08 0.084 -0.119 -0.007 0.679 1 
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Looking at the correlation coefficients, concerning 
only the presumed dependencies (correlations), we 
found different patterns of variation depending on the 
sample length, expressed by (6), (7). (8), (9), (10), as 
follows: 

 Oscillation pattern 

T1-T3F: 0.738 ↗ 0.790 ↘ 0.716 ↗ 0.745 (6) 

 Oscillation pattern 

T1-T3R: 0.722 ↗ 0.767 ↘ 0.733 ↗ 0.753 (7) 

 Large Oscillation pattern 

T3F-T3R: 0.765 ↘ 0.705 ↘ 0.637 ↗ 0.711 (8) 

 Decrease pattern 

T12-T13: 0.725 ↘ 0.623 ↘ 0.498 ↘ 0.474 (9) 

 Large Oscillation pattern 

T14.1- T14.2: 0.690 ↗ 0.690 ↗ 0.746 ↘ 0.679 

(10) 

Therefore, we could remark an oscillation pattern 
in 4 cases and a decrease pattern in a single case. 
Except the decrease tendency for T12-T13, which is 
still present, all other patterns are oscillations. These 
results will be object of further investigations on our 
future work. 

Looking at all table values, we concluded that 
there is a strong correlation between Frequency 
(Monobit) Test (T1) and both components of 
Cumulative Sums Test (T3F and T3R), and also 
between Random Excursions Test (T12) and Random 
Excursions Variant Test (T13) (both being run with a 
parameter x = 1), except Table 4 and 5 where T12-T13 
= 0.498 and T12-T13 = 0.474 (being under 0.5, there 
is a weak correlation). In addition, there is a strong 
correlation between the components of Cumulative 
Sums Test (T3F and T3R) and also between the 
components of Serial Test (T14.1 and T14.2). 

This result showed some redundancies that existed 
between different tests, such as between Frequency 
and Cumulative Sums Test, or between Random 
Excursions and Random Excursions Variant Test 
(except for the longest samples, that is, with M = 
5,000,000 and 6,000,000), but also between 
components/variants of a single test, such as 
Cumulative Sums Test or Serial Test. 

In terms of practical/efficient testing, these 
dependencies could be avoided by using only one of 
the redundant different tests (e.g. T3) and also by 
rejecting one of the redundant components of a single 
test (e.g. T3R and T14.2). This is not the case of 
Random Excursions and Random Excursions Variant 
Test, because of the variation of their correlation 
coefficient depending on the sample length. However, 
this correlation must be relieved and treated carefully. 

In addition, the Cumulative Sums Test is 
correlated both between its components and with other 
tests. Hence, for a practical/efficient testing, the 
Cumulative Sums Test and one of the Serial Test’s 
components could be missed from testing. 

From a different perspective of practical/efficient 
testing, we gathered all information regarding 
approximate duration of all tests on Table VI. As it 
clearly appears, all duration values are high, especially 
for M = 2,000,000, 5,000,000, and 6,000,000. 
Knowing from [15] that software implementations of 
cryptographic applications are very slow, by 
comparison to hardware implementations (in many 
cases 10 times slower), for our future work we intend 
to realize efficient hardware implementations of NIST 
statistical tests. 

TABLE VI.  APPROXIMATE DURATION OF STATISTICAL 

TESTS 

Test 

No. 

Test 

Name 

Test Duration [h:min] 

M = 

1 mill. 

M = 

2 mill. 

M = 

5 mill. 

M = 

6 mill 

T1 
Frequency 

(Monobit) 
08:00 20:00 48:30 58:55 

T2 

Frequency 

Test 

within a 

Block 

09:00 20:00 49:00 59:20 

T3 

Cumulative 

Sums 

(Cusums) 

09:25 20:40 48:00 58:55 

T4 Runs 10:00 19:10 48:00 59:20 

T5 

Longest- 

Run-of- 

Ones 

in a Block 

10:00 19:10 48:00 59:10 

T6 

Binary 

Matrix 

Rank 

10:00 20:00 48:35 59:20 

T7 

Discrete 

Fourier 

Transform 

(Spectral) 

09:30 20:00 48:35 59:20 

T8 

Non- 

overlapping 

Template 

Matching 

10:00 20:00 49:15 59:50 

T9 

Overlapping 

Template 

Matching 

09:50 20:00 49:00 59:45 

T10 

Maurer's 

“Universal 

Statistical” 

10:00 20:00 49:15 60:00 

T11 
Approximate 

Entropy 
10:00 20:00 49:15 59:45 

T12 
Random 

Excursions 
10:00 20:00 48:45 58:55 

T13 

Random 

Excursions 

Variant 

10:00 20:00 41:00 58:55 

T14 Serial 10:00 20:40 37:50 59:05 

T15 
Linear 

Complexity 
10:00 20:40 40:50 59:40 

IV. CONCLUSIONS 

In this paper we proposed a systematic approach of 
testing and analyzing results concerning the NIST 
statistical test suite, determining dependencies 
between tests, and finding patterns for the evolution of 
these dependencies according to specific factors, such 
as binary string length. Our future works will involve a 
mathematical description of the variance of correlation 
coefficients and, also, more efficient implementations 
of the statistical tests, in order to improve our 
systematic approach. 
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APPENDIX A - RECOMMENDED AND USED PARAMETERS FOR TESTING 

 

where: 

n - The length of the bit string. 

M/m - The length of each block/substring 

N - The number of blocks; selected in accordance with the value 
of M. 

M - The number of rows in each matrix. For the test suite, M 
has been set to 32. If other values of M are used, new 
approximations need to be computed. 

Q - The number of columns in each matrix. For the test suite, Q 
has been set to 32. If other values of Q are used, new approximations 
need to be computed. 

K - The number of degrees of freedom. 

 
Recommended (bits) Used (bits) 

n M/M,Q/Q,K/m N/L n M N 

T1 
n≥M*N 

n≥100 
- - 

100,000,000 1,000,000  

100 
200,000,000 2,000,000 

500,000,000 5,000,000 

600,000,000 6,000,000 

T2 
n≥M*N 

n≥100 
M>0,01*n, M≥20 N<100 

100,000,000 999,936=128*7,812 

100 
200,000,000 2,000,000=128*15,625 

500,000,000 4,999,936=128*39,062 

600,000,000 6,000,000=128*46,875 

T3 
n≥M*N 

n≥100 
- - 

100,000,000 1,000,000 

100 
200,000,000 2,000,000 

500,000,000 5,000,000 

600,000,000 6,000,000 

T4 
n≥M*N 

n≥100 
- - 

100,000,000 1,000,000 

100 
200,000,000 2,000,000 

500,000,000 5,000,000 

600,000,000 6,000,000 

T5 

n≥128 M=8 N=16 100,000,000 1,000,000=10,000*100 

100 
n≥6,272 M=128 N=49 200,000,000 2,000,000=10,000*200 

n≥750,000 M=10,000 N=75 
500,000,000 5,000,000=10,000*500 

600,000,000 6,000,000=10,000*600 

T6 
n≥38M*Q 

n≥38,912 
M=Q=32 - 

100,000,000 999,424=976*32*32 

100 
200,000,000 1,999,872=1,953*32*32 

500,000,000 4,999,168=4,882*32*32 

600,000,000 5,999,616=5,859*32*32 

T7 n≥1,000 - - 

100,000,000 1,000,000 

100 
200,000,000 2,000,000 

500,000,000 5,000,000 

600,000,000 6,000,000 

T8 n≥M*N M>0,01*n, m=9, m=10 
N≤100 

N=8 

100,000,000 1,000,000=125,000*8, m=9 

100 
200,000,000 1,000,000=250,000*8, m=9 

500,000,000 5,000,000=625,000*8, m=9 

600,000,000 6,000,000=750,000*8, m=9 

T9 
n≥M*N 

n≥1,000,000 

m≈log2 M, M=1,032 m=9, m=10 

λ= (M-m+1)/2m ≈2 K≈2*λ, K=5 

N*(min πi)>5 

N=968 

100,000,000 998,976=1,032*968, m=9, λ=2 

100 
200,000,000 1,998,984=1,032*1,937, m=9, λ=2 

500,000,000 4,999,008=1,032*4,944, m=9, λ=2 

600,000,000 5.999.016=1,032*5,813, m=9, λ=2 

T10 n≥(Q+K)L 
Q=10*2L, 640≤Q≤655,360 

K≈1000*2L 64,000≤K≤65,536,000 
6≤L≤16 

100,000,000 999,999=(1,280+141,577)*7 

100 
200,000,000 1,999,998=(1,280+284,434)*7 

500,000,000 4,999,995=(5,120+550,435)*9 

600,000,000 5,999,994=(5,120+661,546)*9 

T11 n=f(m) 
 

 

100,000,000 M=1,000,000, m=10 

100 
200,000,000 M=2,000,000, m=10 

500,000,000 M=5,000,000, m=10 

600,000,000 M=6,000,000, m=10 

T12 n≥1,000,000 - - 

100,000,000 1,000,000 

100 
200,000,000 2,000,000 

500,000,000 5,000,000 

600,000,000 6,000,000 

T13 n≥1,000,000 - - 

100,000,000 1,000,000 

100 
200,000,000 2,000,000 

500,000,000 5,000,000 

600,000,000 6,000,000 

T14 n=f(m) 
 

 

100,000,000 M=1,000,000, m=16 

100 
200,000,000 M=2,000,000, m=16 

500,000,000 M=5,000,000, m=16 

600,000,000 M=6,000,000, m=16 

T15 n≥1,000,000 500≤M≤5,000 N≥200 

100,000,000 1,000,000=500*2,000 

100 
200,000,000 2,000,000=500*4,000 

500,000,000 5,000,000=500*10,000 

600,000,000 6,000,000=500*12,000 
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L - The length of each block. Note: the use of L as the block 
size is not consistent with the block size notation (M) used for the 
other tests. How-ever, the use of L as the block size was specified in 
the original source of Maurer's test. 

Q - The number of blocks in the first initialization sequence. 

K - The number of blocks in the second initialization sequence. 
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