
Journal of Electrical Engineering, Electronics, Control and Computer Science –

JEEECCS, Volume 5, Issue 15, pages 7-16, 2019

Software Implementation of an Autonomous

Robot Capable of Detecting and

Extinguishing a Flame

Gabriel-Petruţ Bădicioiu, Alexandru Săvulescu

Department of Automatics, Computers and Electronics

Petroleum Gas University of Ploieşti

Ploieşti, Romania

badicioiugabriel@yahoo.com, asavulescu@upg-ploiesti.ro

Abstract –In this paper, it is presented, mainly from the

point of view of designing the control program, the

making of a mobile robot capable of detecting and

extinguishing a flame. The program was structured

using two main functions: the avoid() function that

makes the robot to move around, avoiding the

obstacles encountered in his path, and the firefighter()

function that detects and extinguishes the flame. In

terms of flame detection, the disturbance (sunlight

variation) on the flame sensors has been canceled.

There are presented the organization chart of the

implemented program, the role of the auxiliary and

main functions designed, as well as the main

implemented code structures. After uploading the

program on the Arduino Microcontroller, it appeared

that the robot worked well and accomplished the

intended task.

Keywords-autonomous robot, mobile robot, Arduino

programming, robot navigation, ultrasonic sensor,

servomotor

I. INTRODUCTION

Autonomous mobile robots nowadays have a
strong development with application in various
fields: industry, military, environmental protection,
research etc. An important role for many robots of
this type is to perform certain tasks in extremely
dangerous environments for the human operator.
The application described in this paper in terms of
implemented software has the objective of operating
a mobile robot capable of detecting and
extinguishing a flame, which means exactly to fulfill
a task that can become extremely dangerous for
humans.

The software design of autonomous mobile
robots is considering the desired degree of autonomy
and has as main objectives [1]:

 - the robot’s knowledge of the operating
environment and the dynamic update of any
changes;

- determining an optimal trajectory of the robot
and interacting with the operating area to move the
robot in order to complete its task;

- the permanent localization of the robot;

- the functional coordination of the robot with
other systems in order to fulfill the desired task.

Unlike other finite programs, robotic programs
run in an infinite loop, repeating indefinitely. The
principle of an autonomous mobile robot is the
continuous realization of the Sense - Think - Act
cycle, as suggestively presented in Fig. 1 for the
built robot. This cycle also represents a paradigm of
classical artificial intelligence. Inspired by control
theory, the Sense - Think - Act cycle has as its main
objective the continuously attempt to minimize the
error between the actual state of the system and its
desired state and in the software it is introduced by
running in an infinite loop [2].

Fig. 2 shows the interaction principle of an
autonomous mobile robot with the environment . It
can be observed that the robot:

-senses, meaning that it permanently gets
information from its sensors;

Think

Act

Sense

Figure 1. The operating principle of an autonomous robot

Figure 2. The interaction of the autonomous robot

with the environment

mailto:badicioiugabriel@yahoo.com
mailto:asavulescu@upg-ploiesti.ro

Gabriel-Petruț Bădicioiu, Alexandru Săvulescu 8

 thinks, meaning that it processes the
sensory information received, understands
the conditions of the environment where it
is located and makes the best decisions on
the way it must act, also taking into account
its internal intentions;

 acts on the devices it is equipped with to
achieve its mission. After the actions,
changes are made in the environment, the
robot notices (senses) the effects of these
changes, and the cycle goes on theoretically
forever [3].

II. THE HARDWARE DESCRIPTION OF THE

PHYSICALLY MADE AUTONOMOUS ROBOT

In order to achieve its tasks accurately, any
autonomous robot must be equipped with [4]:

- a versatile and reliable mechanical system;

- a high-performance actuating system;

- a sensory system capable of sensing different
parameters;

- high-performance algorithms and driving
systems.

Considering these elements, it was made an
autonomous mobile robot capable of detecting and
extinguishing a flame, whose image is shown in
Fig. 3.

The electrical diagram of how the components
were connected and a detailed description of how
the robot works are presented in [5] and its
operational diagram is shown in Fig. 4.

The robot has two main tasks: to move around
avoiding all the obstacles encountered in his path,
searching for flames in the area intended for
protection and to detect and extinguish these flames.

The components required for the robot to move,
to sense the obstacles and to avoid them are as
follows (according to the numbering in Fig. 3):

1 - three wheel robot chassis;

2 - Arduino UNO R3 microcontroller [6];

3 - power supply (12V);

4 - two DC geared motors to actuate the wheels;

Figure 3. The physically made mobile robot

Servomotor

(neck)

Buzzer

Servomotor

(elbow)

End–effector

(fan)

Servomotor

(wrist)

LEDs

A
R

D
U

IN
O

m
ic

ro
co

n
tr

o
ll

er

Driver for

DC motors

Geared

motor(left)

heel)

Geared

motor(right)

el)

Electric

power

Flame

sensor

(front)

Flame

sensor

(right)

Flame

sensor

(left)

Flame

sensor

(back)

Ultrasonic

sensor

Figure 4. The operational diagram of the robot

Software implementation of an autonomous robot capable of detecting and extinguishing a flame

9

5 - L298N driver to control the DC geared
motors;

6 - ultrasonic sensor to sense the obstacles;

7 - SG90 servo to rotate the ultrasonic sensor.

For the flame detection, the audible and
luminous warning of the human operators and the
flame extinguisher, besides the power supply and the
Arduino microcontroller, the following components
are required (according to the numbering in Fig. 3):

8 - four flame sensors, one in the front, two in
the sides and one in the back so it can sense the
flame from any angle;

9 - servomotor for the elbow;

10 - servomotor for the wrist;

11 - a fan(the end-effector of the robotic arm);

12 - a buzzer for the audible warning of flame
detection;

13 - two LEDs for the luminous warning of
flame detection.

III. THE ROBOT’S DRIVING PROGRAM

ORGANIZATION CHART

To control the experimental robot, the
organization chart shown in Fig. 5 was created.

There are 4 hierarchical levels of an autonomous
robot driving system, each level assuming a data
processing by a computing system. Based on the

Figure 5. Robot’s driving program organization chart

Gabriel-Petruț Bădicioiu, Alexandru Săvulescu 10

results obtained, the computer (in this case the
Arduino microcontroller) generates the command in
order to achieve the proposed task [7, 8]. The four
levels of the driving system are:

 the robot control: this level ensures
physical control of the sensors and
actuators available on the robot;

 sensory interpretation: at this level, the
sensors data acquisition and interpretation
by the sensor module are realized;

 the driving level : at this level, the sensory
information is processed and commands are
generated in accordance with the task to be
performed;

 the executive level : it is ensured that each
movement is accomplished so that the robot
performs its task.

IV. AVOID() FUNCTION PRESENTATION

The program for the robot control is composed
of two basic functions called avoid() and
firefighter() working within an infinite loop called
void loop(). The avoid() function is represented in
the blue part of the organization chart shown in
Fig. 5, and the firefighter() function is represented
by the orange part.

The avoid() consists of nine auxiliary functions,
as shown:

-five functions which assure the forward() /

backward() / turnRight() / turnLeft() / stop()
movements;

-the checkDistance() function measures the
distance up to the obstacles;

-the orientation() function by which the robot
receives the appropriate information in order to
choose the right direction to avoid the obstacles;

- the angle() function increases the visibility
angle of the robot.

A. The movement functions of the robot

The control of the DC motors acting on the side
wheels of the robot platform shall be performed via
the L298N driver shown in Fig 6. The in1 and in2
input pins of the driver are connected to the

microcontroller and correspond to the out1 and out2
output pins corresponding to the motor A. Similarly,
the in3 and in4 input pins of the driver correspond to
the out3 and out4 output pins connected to the
motor B.

The enA and enB pins enable and disable the
corresponding motor. They are normally used to
control the motor speed via a PWM signal. The
command of the two motors using the L298N driver
(known in the literature as a dual H-bridge) is based
on the H-bridge principle. An H-bridge is an
electronic circuit used to reverse the polarity of a
voltage applied to a load (a DC motor in this case),
as shown in Fig. 7, which leads to three motor
operating stages: forward, backward and breaking.
These circuits are often used in robotics and other
applications to allow DC motors to run forwards or
backwards [9].

According to Fig. 7a, if the S3 and S2 switches
are closed and the S1 and S4 switches remain open,
a positive voltage is applied to the motor M and it
will rotate clockwise. If the S3 and S2 switches are
opened and the S1 and S4 switches are closed, as
shown in Fig. 7b, the voltage is reversed and the
motor will turn counterclockwise. To break the
motors, all the switches must be opened so the motor
is no longer powered (Fig. 7c).

The forward() function provides the clockwise
rotation of both DC motors so that the robot can
move forward. The right motor is controlled on the
in1 and in2 pins of the driver and the left motor is
controlled on the in3 and in4 pins. To turn the
motors clockwise, a HIGH signal is sent via the
digitalWrite command to the in1 and in3 pins and
similarly, the in2 and in4 pins are put on LOW.

6 V

6 V

6 V

a) b)

c)

Figure 7. The rotation of the motor depending on the

voltage applied a) clockwise rotation

b) counterclockwise rotation c) break

Figure 6. L298N driver to control the DC motors

Software implementation of an autonomous robot capable of detecting and extinguishing a flame

11

void forward()

{

//right motor

digitalWrite(in1, HIGH);

digitalWrite(in2, LOW);

//left motor

digitalWrite(in3, HIGH);

digitalWrite(in4, LOW);

}

The backword() function works the same as the
forward() function, but this time in1 and in3 pins
will be set on LOW and in2 and in4 will be set on
HIGH (the polarity is reversed and the motor rotates
in the opposite direction).

In order to make the robot turn right, it is
necessary to rotate the right motor backwards while
the left motor is running forward. For the left turn, it
is necessary to rotate the right motor forward and the
left motor backwards. For this purpose, the
turnRight() and turnLeft() functions have been
created on the same principle as the one previously
described.

Based on the same principle, the stop() function
has been created in order to stop the robot. Within
this function, all the pins are set either LOW or
HIGH.

B. The checkDistance() function

The measurement of the distance to the obstacle
is done by the checkDistance() function which
controls the ultrasonic sensor (HC-SR04) operation.

The ultrasonic sensor has 4 pins: vcc, echo, trig
and gnd. When a voltage signal is applied to the trig
pin, the electroacoustic transducer is powered,
emitting in space a cycle of 8 ultrasonic bursts
according to Fig. 8 and the internal timer of the
transducer start to measure. At the echo pin, a HIGH
signal is emitted that returns the sound propagation
time from the sensor to the obstacle and back [10].

In Fig. 9, it is shown a principle drawing for the
ultrasonic sensor operation. The time variable t
measured from the moment of signal transmission

until the signal return is used. The distance L to a
possible obstacle is calculated with the following
relation:

L = v ∙ t ∙ (cos

where v represents the velocity of the ultrasonic

pulses and
transmitter is close to the receiver, as it is for the

sensor used (HC-SR04), then cos = 1 (Fig. 9).

In order to emit the ultrasonic pulses, a voltage
pulse with an amplitude of 5V and a duration of
10μs must be applied to the trigger pin. It will start
with the trig pin on LOW, wait for the signal to
settle, then the pin will be set on HIGH, wait 10 μs
and then the pin will be set again on LOW, as seen
in the following code sequence:

digitalWrite(trig, LOW);

delayMicroseconds(2000);

digitalWrite(trig, HIGH);

delayMicroseconds(10);

digitalWrite(trig, LOW);

After the 8 ultrasonic pulses have been created,
the pulseIn command is used to search a HIGH
signal at the echo pin, a signal that returns in μs the
propagation time of the sound from the sensor to the
obstacle and back. This value is stored in the time
variable and is converted from microseconds in
hours and the distance is converted from km to cm.

time=pulseIn(echo, HIGH);

time=(time/1000000.)/3600.;

distance=((speedOfSound*time)/2) * 100000;

C. The orientation() function

If it detects an obstacle in front of it, the robot
stops and orients itself using the orientation()
auxiliary function. Once it stops, the robot measures
the distance to the right and to the left, compares the
two measured values and then turns in the direction
where it has more space. For the servo that turns the
ultrasonic sensor, the neck object was created.

The angle values (in degrees) with witch the
servo rotates in each direction will be stored in the
lookRight and lookLeft variables. In the checkRight
and checkLeft variables is stored the measured
distance for each direction.

Figure 8. Ultrasonic sensor signals

Figure 9. The principle of the ultrasonic sensor

Gabriel-Petruț Bădicioiu, Alexandru Săvulescu 12

Orientation() function code

Void orientation()

{ neck.write(lookRight); //ultrasonic sensor
oriented to the right

checkDistance(); //measure distance to the
right

delay(checkDelay); // time required to
measure

checkRight1=distance; //store the distance in
the checkRight1 variable

neck.write(lookRight+30); // rotate the servo
to the right by 30 degrees

checkDistance(); //call the checkDistance
function to measure the distance

delay(checkDelay); //time required to
measure

checkRight2=distance; //store the distance in
the checkRight2 variable

//compare checkRight1 to checkRight2 and
checkRight gets the lowest value

if(checkRight1>checkRight2)

checkRight=checkRight1;

else

checkRight=checkRight2;

//the code is repeated for the left side, but
instead of neck.write(checkRight+30), use
neck.write(checkLeft-30)

//compare checkLeft1 to checkLeft2 and
checkLeft gets the lowest value

}

// void orientation

D. The angle() function

The angle() function has been created to increase
the robot's visibility angle. The robot constantly
rotates the ultrasonic sensor in every direction by 30
degrees. It knows in which direction to look by
checking the value of the move variable that changes
its value after each rotation. For example, if move=1,
the robot knows he has to look to the right, measure,
reset the timer after 250 ms and assing to the move
variable the value of 2. This way it knows it has to
look ahead and so on. The angle() function is called
as long as there is no obstacle, so only if the distance
is greater that 20 cm [11].

The robot switches his aim depending on the
value of the move variable.

Void angle()

{ static int move=1; //look to the right

 if(timer>250 && distance>20 && move==1)

{neck.write(lookRight+60) //look right

move=2; // assign the value of 2 to the move
variable

timer=0; // reset timer

return; //return is used so that it doesn’t go to
the next condition until the next cycle

} // if(timer>250 && distance>20 &&
move==1)

if(timer>250 && distance>20 && move==2)

{

neck.write(lookAhead);

move==3;

timer=0;

return;

} // if(timer>250 && distance>20 &&
move==2)

if(timer>250 && distance>20 && move==3)

{

neck.write(lookLeft-60);

move=4;

timer=0;

return;

} // if(timer>250 && distance>20 &&
move==3)

if(timer>250 && distance>20 && move==4)

{

neck.write(lookAhead);

move=1;

timer=0;

return;

} // if(timer>250 && distance>20 &&
move==4)

}

//void angle

E. Description of the main function avoid()

Using these auxiliary functions, the main avoid()
function was created. This function first calls the
angle() function to increase the visibility angle of
the ultrasonic sensor. Then the checkDistance()
function is called to check the distance. Imposing the
condition that if the distance is less than 20 cm, the
robot stops, measures the distance in each direction,
compares the two measured values and turns in the
direction where it has more space.

Void avoid()

{

angle(); //call the angle function to increase
the visibility angle

checkDistance(); //measure the distance

Software implementation of an autonomous robot capable of detecting and extinguishing a flame

13

if(distance<20) // if the distance is less than
20cm the robot stops and turns

{ backward();

delay(350);

stop();

orientation();

//compare the two measured values and turn
in the direction where it has more space

if(checkLeft<checkRight)

{

neck.write(lookAhead);

 turnRight();

delay(turnDelay);

}

// if(checkLeft<checkRight)

else

{gat.write(lookAhead);

turnLeft();

delay(turnDelay);

} //else

} //if(distance<20)

else

forward();

timer++;

 }

//void avoid()

V. DESCRIPTION OF FIREFIGHTER() FUNCTION

The main function firefighter() has four auxiliary
functions:

-detectFire() function senses the presence of the
fire;

-fanOn() and fanOff() functions to start
respectively stop the fan;

- adapt() function that cancels the influence of
the sunlight on the sensors.

A. detectFire() function

Using the detectFire() function, the values of the
four flame sensors are read using the analogRead
command and stored in a variable.

Void detectFire()

{

right=analogRead(rightSensor); //reads the
value of the right flame sensor and store it in the
right variable

front=analogRead(frontSensor);

left=analogRead(leftSensor);

back=analogRead(backSensor);

}

// void detectFire()

B. fanOn() and fanOff() functions

The fanOn() function is called when the robot
reaches a reduced, predetermined distance from the
flame (it knows it has come close to the flame by
comparing the sensor values with a reference value
from the memory). Then, the elbow servo is actuated
using the command elbow.write() (elbow is the
object created for this servo), directing the end-
effector (the fan) towards the flame; the fan is turned
on by sending a HIGH signal to the ina pin and a
LOW signal to the inb pin. The end-effector
performs a curved motion with the help of the servo
named wrist. To achieve this motion, two for loops
were used, where i represents the current position of
the servo, it compares this variable to 180 (a servo
rotates to 180 degrees) and increments by one after
each iteration while i<=180. To get back at 0
degrees, the variable i decreases by one as long as
i>=0. All this is executed in a repetitive statement
do{} while(). The while condition is that the front
flame sensor value drops below the reference value
and has the lowest value compared to the other
flame sensors (if, for example, the value of the right
sensor is lower than the front sensor, although the
value of the front sensor is less than the reference
value, it will turn right until the front sensor has the
lower value, which means the robot is facing the
flame).

fanOn() function code

void fanOn()

{elbow.write(145); //direct the end-effector to
the flame

delay(500); // wait until the elbow servo
rotates

//turn on the fan by sending a HIGH signal to
ina and a LOW signal to inb

digitalWrite(ina, HIGH);

digitalWrite(inb, LOW);

// perform the curved motion and start the
alarm

do

{ for(int i=45;i<=180;i++)

{ wrist.write(i);

delay(17);

if(i==45)

digitalWrite(buzzer, HIGH);

if(i==90);

 digitalWrite(buzzer, LOW);

} // for(int i=45;i<=180;i++)

Gabriel-Petruț Bădicioiu, Alexandru Săvulescu 14

for(int i=180; i>=0; i--)

{wrist.write(i);

delay(17);

if(i==180)

digitalWrite(buzzer, HIGH);

if(i==90)

 digitalWrite(buzzer, LOW);

if(i==45)

 digitalWrite(buzzer, HIGH);

} // for(int i=180; i>=0; i--)

detectFire();

} //do

while(reference>=600 && reference<=950 &&
front<350 && front<right && front<left ||
reference<600 && reference>350 && front<250
&& front<right && front<left || reference<350 &&
front<150 && front<right && front<left ||
reference>950 && reference< 500 && front<right
&& front<left);

}

//void fanOn()

 After the flame has been extinguished (the
robot knows that the flame is extinguished when
the sensors values rise above the reference), the
fanOff function turns off the fan by sending a
LOW signal to both ina and inb pins and poses the
elbow and the wrist in the initial position.

fanOff() function code

void fanOff()

{

//turn off the fan

digitalWrite(ina, LOW);

digitalWrite(inb, LOW);

//put the arm in the initial position and turn
off the alarm

for(int i=45;i<=90;i++)

{ wrist.write(i);

delay(17); }

 // for(int i=45;i<=90;i++)

digitalWrite(buzzer, LOW); }

//void fanOff()

The reference variable value is calculated using
the setRef() function. This function first checks the
flame sensors values by calling the detectFire()
function, then compares the values and takes the
lowest value as reference.

setRef() function code

void setRef()

{

detectFire();

if(right<front && right<left)

{ reference=right-120;

if(right<100)

 reference=right-10;

} // if(right<front && right<left)

if(front<right && front<left)

{ reference=front-120;

if(front<100)

 reference=front-10;

} // if(front<right && front<left)

if(left<right && left<front)

{ reference=left-120;

if(left<100)

 reference=left-10;

} // if(left<right && left<front)

refBack=reference-180;

}

//void setRef()

C. The adapt() function

Because the sunlight disturbs the flame sensors,
the robot needs a reference value that adapts to that
light. For this, the adapt() function was created. As
long as there is no fire (the sensors values are over
the reference), the reference is updated in real time.
For example, if the robot moves into an area where
the sun is brighter, the reference will be updated.
Updating the reference is permanently made as long
as the values of all sensors are above the reference,
when the values of all the sensors are suddenly
decreasing (the robot has passed into a bright area)
and when all the values are suddenly rising (the
robot has gone to a shaded area).

The adapt() function code

void adapt()

{

if(left>reference && front>reference &&
right>reference) //if the values are above the
reference update the reference in real time

{ if(right<front && right<left)

reference=right-120;

if(left<front && left<right)

reference=left-120;

if(front<right && front<left)

reference=front-120;

refBack=reference-170;

Software implementation of an autonomous robot capable of detecting and extinguishing a flame

15

} // if(left>reference && front>reference &&
right>reference)

if(right<reference && left<reference &&
front<reference) //if all the values are dropping
below the reference

{ if(right>front && front>left) //if right has
the greater value

{if(right-front<=200 && right-left<=200)
//and the difference between right and the other
sensors is less than 200

setRef(); //update the reference

} // if(right>front && front>left)

if(front>right && front>left) //if front has the
greatest value

{ if(front-right<=200 && front-left<=200)
//and the difference between front and the other
sensors is less than 200

setRef(); //update the reference

} // if(front>right && front>left

if(left>front && left>right) //if left has the
greater value

{ if(left-front<=200 && left-right<=200)
//and the difference between left and the other
sensors is less than 200

setRef(); //update the reference

} // if(left>front && left>right)

 if(reference-front<=100 || reference-
right<=100 || reference-left<=100) //if the
difference between reference and the sensor that
drops below the reference is less than 100

setRef(); //update reference

} // if(left>reference && front>reference &&
right>reference)

if(right>reference+200 &&
front>reference+200 && left>reference+200) //if
all the values are rising (the robot got in the
shaded area)

setRef(); //update the reference

if(reference<100)

setRef(); //if the reference is lower than 100
update

 if(front<100 && left<100 || front<100 &&
right<100 || front<100 && left<100 && right<100)

setRef(); }

//void adapt()

D. The firefighter() function

The robot is being guided to the flame depending
on the flame sensors values. For example, if the right
sensor drops below the reference value and it has the
lowest value, the robot triggers the alarm and turns
right until he is facing the fire (while turning, he

calls the detectFire() function and compares the
right sensor value with the front sensor value)

if(right<reference && right<front && right<left
&& right<back)

{

turnRight();

digitalWrite(buzzer, HIGH);

delay(250);

digitalWrite(buzzer, LOW);

delay(250);

detectFire();

}

When the value of the front sensor drops below
the reference value and has the lowest value, the
forward() function is called so the robot moves
toward the flame. As he approaches the fire, the
value of the front sensor decreases and when it
reaches a value of less than 100, it stops, calls the
fanOn() function to extinguish the flame and then it
stops the fan by calling the fanOff() function.

if(front<reference && front<100 &&
front<right && front<left)

{

stop();

fanOn();

fanOff();
}

VI. THE MAIN FUNCTION VOID LOOP ()

The main function, void loop(), is an infinite
loop. This is where the values of the sensors are
constantly checked by calling the detectFire()
function and where the robot adapts to the sunlight
using the adapt() function [12].

 If the sensor values are above the reference
(there is no fire), the avoid() function is called (the
robot is looking for fire avoiding obstacles),
otherwise the firefighter() function is called.

void loop()

{

detectFire(); //check the flame sensors values

adapt(); //adapt to the sunlight

firefighter(); //call the firefighter function

if(right>reference && front>reference &&
left>reference && back>reference) //if the values
are above the reference (there is no fire), call the
avoid() function (search fire while avoiding
obstacles)

avoid();

} //void loop()

Gabriel-Petruț Bădicioiu, Alexandru Săvulescu 16

CONCLUSIONS

One of the key benefits of using robots is that
they can be used to perform tasks in extremely
dangerous environments for human operators. In this
category of robots, it is also included the
autonomous mobile robot capable of detecting and
extinguishing a flame described in this paper,
especially in terms of the execution of the control
program.

Because it is an experimental robot, pretty
simple and inexpensive devices have been used for
the hardware implementation, wanting actually to
achieve an experimental model to test the
development of the most comprehensive software to
ensure the accomplishment of the proposed tasks.
This structured presentation of the software can help
the reader understand the operation of such robots,
as well as develop the ability to perform similar
functions as part of the robot control programs.

The program is structured using two main
functions: the avoid() function that moves the robot
around, avoiding the obstacles encountered in his
path, and the firefighter() function to detect and
extinguish the flame. An important improvement of
the firefighter() function is cancelling the sunlight
variation effect on the flame sensors by permanently
updating the value of the reference variable, which
is used to determine whether there is a fire or not.

After the implementation of the program, it
appeared that the robot achieves his mission of
detecting and extinguishing a flame, even if the
source of the fire is moving during the robot’s
movement or if the outer light or shade conditions
are extremely variable. The flame detection and
extinguishing system can be further improved by
using smoke detectors, by increasing the mobility of
the robotic arm or by using a water pump instead of
the fan.

REFERENCES

[1] W. Yang, “Autonomous robots research advances”, Nova
Science Publishers Inc., New York, 2008.

[2] H. Hexmoor, “Essential principles for autonomous
robotics”, Morgan & Claypool Publishers, 2013

[3] S. Tzafestas, “Introduction to mobile robot control”,
Elsevier, 2013.

[4] H. Asama, T. Fukuda, T. Arai, I. Endo, “Distributed
autonomous robotic systems 2”, Springer Science, 1996.

[5] G.P. Bădicioiu, A. Săvulescu, “Hardware implementation of
a robot capable of detecting and extinguishing a flame”,
unpublished

[6] S. Barret, “Arduino microcontroller processing for
everyone”, Third Edition, Morgan & Claypool Publishers,
2013

[7] D. Brugali, “Software engineering for experimental
robotics”, Springer – Verlag Berlin Heidelberg, 2007

[8] M. Margolis, “Make an Arduino-controlled robot”, O’Reilly
Media Inc., 2013

[9] I. Noda, N. Ando, D. Brugali, J. Kuffner, “Simulation,
modeling and programming for autonomous robots”,
Springer – Verlag Berlin Heidelberg, 2012

[10] A. Whitbrook, “Programming mobile robots with aria and
player. A guide to C++ object oriented control”, Springer –
Verlag London Limited, 2010

[11] L. Joseph, “Learning Robotics Using Python”, Packt
Publisher, Birmingham, 2015

[12] J. Blum, “Exploring Arduino: tools and techniques for
engineering wizardry”, John Wiley & Sons Inc.,
Indianopolis, 2013

