
Journal of Electrical Engineering, Electronics, Control and Computer Science –

JEEECCS, Volume 5, Issue 16, pages 17-22, 2019

Development of a faster shortest path search

algorithm based on A* strategy integrated in

an e-learning virtual environment

Silviu Teodor Groza, Mihaela Oprea

Department of Automatic Control, Computers and Electronics

Petroleum-Gas University of Ploiesti

Ploiesti, Romania

Abstract – The paper presents an optimal search

algorithm based on A* strategy for the shortest path

problem solving and its integration into LearningONE,

an e-learning virtual environment that was developed in

a first stage for teaching some courses in the Computer

Science domain, the Artificial Intelligence course and

the Object Oriented Programming course. The main

objective of the research work was to improve the

running time of the A* informed search strategy for

finding the shortest path between two locations in a

certain environment. The experimental results obtained

for the application of virtual mobile robots navigation in

a maze that was integrated in LearningONE, showed

that the optimized A* algorithm performed faster than

the A* algorithm.

Keywords-shortest path problem; A* strategy; search

optimization; e-learning platform; virtual environment

I. INTRODUCTION

Several search algorithms were applied so far for
the determination of the shortest path between two
locations. Examples are uninformed search strategies
(e.g. breadth-first, depth-first, uniform cost search),
informed strategies (e.g. best-first, A*, D*, any-angle
path planning algorithms) [1], [2] and other algorithms
(e.g. specific to graph theory such as the Dijkstra’s
algorithm [3]). These strategies have as main purpose
the determination of an optimal solution, usually, in
terms of its cost. On the other hand, their complexity is
evaluated in terms of space and time for finding the
solution. Our research work focuses on the objective
of improving the time of finding the shortest path
between two locations. As one of the best strategies
that proved to be efficient for the problem we tackled
is the A* search strategy (initially, introduced in [4]
and corrected in [5]), we propose a method to reduce
its running time. To prove the efficiency of our
method, we have developed an application of virtual
mobile robots navigation in a maze that was integrated
in an e-learning virtual environment, LearningONE
(presented in [6]), designed and implemented in a first
stage as an educational platform for teaching some
courses from the Computer Science domain (Artificial
Intelligence and Object Oriented Programming).

The paper is organized as follows. Section II
presents in detail the optimized shortest path search
algorithm based on the A* strategy. The application of

virtual mobile robots navigation in a maze that we
have developed in order to implement and test the
performance of the optimized A* algorithm is
described in section III. Also, some experimental
results obtained when the application was run under
LearningONE e-learning virtual environment are
discussed in the same section. The main conclusion
and some future work are presented in the last section
of the paper.

II. THE OPTIMIZED SHORTEST PATH SEARCH

ALGORITHM BASED ON A* STRATEGY

Before describing the optimized shortest path
search algorithm, some basic terms will be defined
(such as search space, initial state, final state - goal
state, node). Let’s consider that we have to solve the P
problem by applying a search strategy to find a
solution. A configuration of the P problem during the
solving process is a state. Thus, the initial state,
denoted as Si, is the state from which the problem
solving starts, usually, explicitly provided by the
problem or characterized in the problem. The goal
state or final state, denoted as Sf, is the state when the
problem is solved, usually, either explicitly given in
the problem or characterized by an objective function.
The search space is defined by all possible states that
the problem solving strategy will generate starting
from the initial state to a final state. As the search
space is a state space in the case of solving the shortest
path problem, it will be implemented as a search tree,
with nodes and arcs, where each node has associated a
state of problem solving process and each arc has
associated an action or operator that will perform the
transition from a state to another state. Thus, we will
use the two terms, state and node as being the same in
this context without ignoring that, in reality, a state is a
configuration of the problem, and a node is a data
structure. A node can be unknown (i.e. not generated),
evaluated (i.e. generated, but with some or none of its
successors generated) and expanded (i.e. generated
and with all successors known).

The A* informed search algorithm is the most
known heuristic search algorithm that was successfully
applied to the shortest path problem solving. The A*
algorithm evaluates the nodes from the search tree by
combining the distance that was already travelled from
the initial state, Si, to the current state (S) and the

Silviu Teodor Groza, Mihaela Oprea

18

estimated distance until the final destination (i.e. final
state, Sf). With other words, for any ’n’ node, f(n)
represents the estimated cost of the best solution that
passes on the ’n’ node.

The general form of the A* strategy [2] is given
below (in pseudocode).

BEGIN

1. OPEN = {Si}, CLOSED = {};

2. * compute f(Si) and associate its value to node Si;
3. IF OPEN = {} THEN // if OPEN is the empty list

 3.1 return NO_SOLUTION;

4. * choose S from OPEN for which f(S) is minimum;

5. * eliminate S from OPEN and insert it in CLOSED;
6. IF S = Sf THEN

 6.1 * retrieve the solution path (S, …, Si);

 6.2 return SOLUTION_FOUNDED;

7. * expand the S node; // generate all its successors
8. repeat from step 3;

END

where, OPEN is the list of evaluated nodes, CLOSED

is the list of expanded nodes, and f() is the heuristic

evaluation function that has the form given by

equation (1).

 f(S) = g(S) + h(S) (1)

where, g(S) is the cost of the partial solution from Si to
S, and h(S) is the heuristic estimation of the distance
from S to Sf (i.e. the estimated cost of the path from S
to Sf).

The A* strategy is complete and optimal if h() is
an admissible heuristic ([7]), i.e. if never overestimates
the path cost for reaching the problem goal, i.e. if

0h()h*(), where h*() is the real cost of the path
from S to Sf.

The A* algorithm works as follows: initially, the
suitable node of the initial state it is introduced in the
open vector (i.e. OPEN list). At every iteration it is
extracted the node with the minimum f(n) cost. If the
founded node is the solution, then the algorithm stops.
Otherwise, if the node was not explored, the node will
be expanded. If a suitable node exists in the general
state of open or closed vector (i.e. OPEN or CLOSED
lists), it will check if the current node will produce a
shorter path to the final goal. If this scenario happens,
the current node will be set as a parent to the node of

the final state and the g() cost will be recalculated. If
this recalculation is happening, then all the paths that
starts from this node will have to be reevaluated.

A* will always return the optimal solution if a
solution exists. Also, to guarantee us that we will get
the optimal solution even if the first solution founded
is not the optimal one, A* allows taking nodes from
the closed vector and reintroduces them in the open
vector if a better way for a node from closed vector is
founded.

The improvement of the A* strategy running time
(i.e. by reducing time complexity) was a research topic
for several researchers. Apart from the fact that the

main purpose of the heuristic function h() is to speed
up the search, other methods were reported in the
literature. For example, some achievements in multi-

agent path finding in real world scenarios based on
generalizations of the A* strategy are presented in [8],
while a pre-processing approach applied to the
associated graph for a better time complexity of the
search strategy in larger and complex environments is
discussed in [9]. Our optimization approach was
designed to be simple and efficient for solving the
problem of maze navigation in a first stage, and as a
future work to be experimented on some more
complex real world problems.

The details of the optimization method applied to
the A* strategy are given as follows, focusing on its
application for an example. The main changes of the
A* algorithm were made by the optimization method
in step 4 and step 7. Concretely, the way of searching
the next position in the open vector (the OPEN list in
the general form of A*) and the way we organize the
open vector, i.e. the part with the vector of current
node’s successors (denoted as Vs) will speed up the
search (i.e. step 4). We have managed Vs vector as a
binary tree that was sorted with heap sort in order to
have in the root of the tree the node with minimum

value of the heuristic evaluation function, f(). Also,
we have set the next position search direction values
with specific cost values.

Before we start to present the specific way of
optimized A* functionality, it is important to know the
values associated to each direction a node can take.
These values are very important, because this way we
can measure the distance we traveled, so we can find
the shortest path.

Figure 1. Specific cost values of each direction (next position) for

the optimized A* algorithm.

The map of the environment is represented as a
matrix and each space of the matrix represents a
position. For every move, depending on the direction,
we have a cost and for this application we have set the
next values:

 for going on horizontal or vertical with a
unit, the cost is 1;

 for going on diagonally with a unit, the
cost is 1.4;

In Fig. 1 are presented the specific cost values of
each direction as they were used in the optimized A*
algorithm. To make the calculations easier, these
values were multiplied with 10, so that the costs
become 10 for horizontal and vertical moves and 14
for diagonally move. For example, a move with two
units on the horizontal of the seeker will cost 20.

Development of a faster shortest path search algorithm based on A* strategy integrated in an e-learning …

19

Figure 2. Examples of G, H and F cost calculation for the

optimized A* algorithm.

In Fig. 2 it is presented an example of the
optimized A* algorithm functionality showing the
computed values for the three cost functions that were
denoted by us as:

 G cost: represents the cost that was
calculated from the start node to the
current node.

 H cost: represents the estimated cost from
the current node to the final node. It needs
to be mentioned that the H cost doesn’t
take in consideration obstacles.

 F cost: represents the sum between G cost
and H cost.

Also, we have denoted with A the seeker and with
B the destination. At the beginning of the optimized
A* algorithm application, it is checked if the position
of A represents the destination too, if not, the position
of A is saved in the closed vector and in the open
vector are saved all the neighbors of A. In the next
step, the open vector will be examined and it will take
the node with the minimum F cost and A will move to
that position. If in the open vector we have two or
more elements with an equal F cost, the algorithm will
choose the node with the lowest G cost.

We remind that the A* algorithm optimization was
made about the way of searching the next position in
the open vector and the way this vector is organized.
At this moment, in the open vector are saved all the
possible future positions of the seeker and at every
iteration it is needed to examine the whole vector for
finding the element with the lowest F cost. We have to
note that if the environment map will become bigger
or more complicated, the algorithm will be more
inefficient, because the open vector will become very
big and all iterations for finding the lowest F cost will
take a lot of time, meaning that the time complexity of
the shortest path search A* algorithm will increase
significantly. In this context, we apply an optimization
method to the A* strategy, in order to decrease the
running time by the way of searching the next position
in the open vector and the way that this vector is
organized. The application of this optimization method
is detailed for an example, as follows.

For an easier description, we will divide the
optimization into the next steps:

Step 1. Organize the open vector as a binary tree
having in nodes the F cost value associated to a
position of the A seeker.

Thus, in step 1 it is presented the open vector in the
form of a binary tree and the number associated to
each element represents the F cost associated to a
position (see in Fig. 3). Each new element that is
introduced will be placed at the last position available
in the tree. In our case, the next free position is as a
right child of the node with the F cost equal to 10.

Figure 3. Illustration of step 1.

We can observe in Fig. 3 that the nodes from the
tree are arranged in the order of their F cost. The root
node represents the node with the lowest F cost.

Step 2. Insert in the tree (in an available position) a
new node representing the F cost of the A seeker next
position.

The basic rule we are using is that none of the
children nodes should have a lower cost than his
parent node.

As we showed in step 1, the new node that was
added was positioned in the first available position, in
our case as the right child of the node with the F cost
equal to 10 (see Fig. 4). We can observe that his
position does not respect the rule, so we need to find
the right position.

Figure 4. Illustration of step 2.

Step 3. Find the right position of the new node
inserted in the tree by sorting the tree with the heap
sort algorithm.

At this step we started to search the right position
for the node with the F cost equal to 5. It was checked
if 5 is lower than 10 and it is true, so the position of
node with the value of 5 will be switched with the
node with the value 10 (see Fig. 5).

Figure 5. Illustration of step 3 – first switch.

As we can see, after the first switch the node with
the value 5 is not in the correct position again so we
will continue to sort the tree. The same rule is applied
again and the node with the value of 5 is switched with
the node with the value of 7 because 5 is lower than 7

Silviu Teodor Groza, Mihaela Oprea

20

(see Fig. 6). At this moment, our tree is sorted and is
ready for the next phase.

Figure 6. Illustration of step 3 – second switch.

Step 4. Extract from the sorted tree the node with
the minimum F cost.

In this step from the sorted tree it will be extracted
the node with the lowest F cost (see Fig 7). And here
we can notice that finding the lowest F cost from the
open vector doesn’t need any more calculations or
iterations because we already know that the lowest F
cost is the root of the tree. After the node extraction,
the tree needs to be sorted again in the next step.

Figure 7. Illustration of step 4.

Step 5. Sort again the tree after the extraction of
the node with minimum F cost (i.e. the root node).

The tree sorting will proceed by following the next
rule. The last element from the vector will be put as
the node root (see Fig. 8). At this moment, all we have
to do is to find the right position for the node with the
value of 10, because the rest of the nodes are already
sorted.

Figure 8. Illustration of step 5 – first switch from last element to

root node.

The node with the value of 10 was checked if it’s
higher than his two children. Because both of them are
lower, it will make a comparison between them and
the lower one will be the one that it will be switched
with 10. In our case this node will be the node with the
value of 7 (see Fig. 9).

The tree sorting will continue and it will be
checked if the node with the value of 10 has children
with F cost lower and we can observe that it has only
one child and that has the value of 31. The tree is now
sorted.

Figure 9. Illustration of step 5 – tree sorting end.

In the previous figures we can observe that we
have a binary tree which it is read as a vector in the
application program, but it is structured and organized
as a binary tree.

Figure 10. The index of each node from the tree shown in fig. 9.

In figures 19, nodes were shown in terms of their
F cost values, but every node has an index and that
index represents the position in the vector (as shown in
Fig. 10). For example, the node with the index equal to
0 represents the root node and the nodes with the
indexes equals to 1 and 2 represents the children nodes
of the root.

In order to be able to identify the children of a
node, we have used the next formulas:

 to identify the left child the formula is given

by equation (2):

Cs = 2 * n + 1 

where, Cs is the index of the left child and n
represents the index of the current node for which we
want to find its right child.

For example, the left child of the node with the
index equal with 2 is the following:

Cs = 2 * 2 + 1 => Cs = 5 (as in Fig. 10).

 to identify the right child, the formula is

given by equation (3):

Cd = 2 * n + 2 

where, Cd is the index of the right child and n
represents the index of the current node for which we
want to find its right child.

For example, the right child of the node with the
index equal with 2 is the following:

Cd = 2 * 2 + 2 => Cd = 6 (as in Fig. 10).

In order to find the parent of a node, we have used

the formula given by equation (4):

P = (n – 1) / 2 (4)

where, P is the index of the parent node and n

represents the index of the current node;

Development of a faster shortest path search algorithm based on A* strategy integrated in an e-learning …

21

For example, for knowing the parent of the node 5

and the node 6 we will have:

 P = (5 – 1) / 2 => P = 4 / 2 => P = 2
 P = (6 – 1) / 2 => P = 5 / 2 => P = 2,5

(ignoring the decimal, we will have only 2).

As we can see in Fig. 10, the parent node of 5 and
6 it is the node with the index equal to 2.

The example that was presented in this section
showed the optimization method application in detail.
Synthesizing, the main contribution of our method is
speeding up the search by the way of searching the
next position in the open vector of the A* strategy and
the type of organization adopted it.

III. APPLICATION

In order to prove the efficiency of our optimized
shortest path search algorithm based on A* strategy
we have developed an application that was integrated
in an e-learning virtual environment, LearningONE
[6]. LearningONE was developed in a first stage as an
e-learning platform for teaching some courses from
the Computer Science domain, Artificial Intelligence
and Object Oriented Programming. The application
was included in the Artificial Intelligence course
module at the topic of informed search strategies
demonstration and was built as a virtual reality
simulation of A* and optimized A* application to a
scenario of two virtual mobile robots that navigate in a
maze and are followed by a camera.

The e-learning virtual platform, LearningONE,
was developed by following the main guidelines
described in [10]. Its main purpose is to provide more
applications of the theoretical course subjects in order
to create engaging experiences for students. This
pedagogical method was adopted under the
perspective of developing a blending learning system
(e.g. as described in [11], [12]), which can improve
students learning performances.

The software tools used for implementing the
LearningONE platform and the application (virtual
mobile robots navigation in a maze) are: Unity
software package (for the development of the e-
learning platform and virtual reality module), Blender
software package (for 3D object modelling) and
Microsoft Visual Studio 2017 (for the implementation
of the A* algorithm and the optimized A* algorithm in
the C# programming language).

Figure 11. A* algorithm demonstration development interface (in

Unity).

Fig. 11 shows the interface of the A* algorithm
demonstration, implemented in Unity. Fig. 12 presents
a screenshot of the application interface with the A*

algorithm and optimized A* algorithm demonstration.
The two virtual mobile robots are shown by the
camera (in the right upper corner of the interface),
during their navigation in the maze (which appear in
the left side of the application interface).

Figure 12. Screenshot of the application interface with the A*

algorithm and optimized A* algorithm demonstration

We have run several navigation tasks of the two
virtual robots. The experimental results obtained were
visible better in the case of using the optimized A*
algorithm, because the optimization brings better
results with more than 50% faster for the time needed
to find the shortest path between two locations in the
maze. Table I shows a selection of the best results
obtained for the running time of the optimized A*
algorithm during various experiments. These results
showed that the optimized shortest path search
algorithm based on the A* strategy performs faster
than the A* algorithm. The performance improvement
is more evident when the search space is bigger (i.e.
for more complex and larger environments).

TABLE I. EXPERIMENTAL RESULTS – RUNNING TIME

Crt.

No.

Running Time [ms]

Experiment A* algorithm
Optimized A*

algorithm

1. Experiment 1 104 36

2. Experiment 2 105 35

3. Experiment 3 112 44

CONCLUSION

The paper described a faster shortest path search
algorithm based on the A* strategy. The main
optimization of the A* algorithm is related to the way
of searching the next movement and the organization
of the vector with the next possible movements. The
performance improvement of the optimized A* search
algorithm in terms of running time is more evident
when the environment is much bigger and complex.
The optimized algorithm was integrated in a virtual e-
learning system, LearningONE, for the application of
virtual mobile robot navigation in a maze, developed
under the Informed Search Strategies module of the
Artificial Intelligence course taught to undergraduate
students from the Computer Science program of study.

As a future work, we intend to extend the
application of the optimized shortest path search

Silviu Teodor Groza, Mihaela Oprea

22

algorithm based on A* strategy to a real world robot
navigation problem solving.

REFERENCES

[1] S. Russell and P. Norvig, Artificial intelligence – a modern
approach, Prentice Hall, 3rd edition, 2010.

[2] J. Pearl, Heuristics: Intelligent search strategies for computer
problem solving, Addison-Wesley, Reading, 1984.

[3] E. W. Dijkstra, “A note on two problems in connexion with
graphs”, Numerische Mathematik, vol. 1, pp. 269-271, 1959.

[4] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for
the heuristic determination of minimum cost paths”, IEEE
Transactions on Systems Science and Cybernetics, vol. 4, pp.
100-107, 1968.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael, Correction to “A
formal basis for the heuristic determination of minimum cost
paths”, SIGART Newsletter, vol. 37, pp. 28-29, 1972.

[6] S. T. Groza, “Design and implementation of an e-learning
system integrated in a virtual world”, BSc diploma project,
Petroleum-Gas University of Ploiesti, 2018.

[7] R. Dechter and J. Pearl, “Generalized best-first search
strategies and the optimality of A*”, Journal of the ACM, vol.
32, pp. 505-536, 1985.

[8] H. Ma, S. Koenig, N. Ayanian, L. Cohen, W. Hönig, T. K.
Satish Kumar, T. Uras, and H. Xu, “Overview:
Generalizations of multi-agent path finding to real-world
scenarios”, Proceedings of IJCAI Workshop Multi-Agent
Path Finding, 2016.

[9] D. Delling, P. Sanders, D. Schultes, and D. Wagner,
“Engineering route planning algorithms”, Algorithmics of
Large and Complex Networks: Design, Analysis, and
Simulation, Springer, 2009.

[10] B. Holmes, J. Gardner, and M. Gamble, “e-Learning:
Concepts and practice”, Journal of Pedagogic Development,
2006.

[11] J. Bersin, The blended learning book, San Francisco, John
Wiley, 2004.

[12] A. Adăscăliței, C. Cucoș, I. Rusu, I. Nica, “Developing
blended learning university environments using Moodle –
case study”, Proceeding of International Conference on
Virtual Learning - ICVL 2014, pp. 258 – 266.

