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Abstract – This paper presents a manual implementation 

using the C# language of a minimalist compiler for 

didactic purposes. The design and implementation steps 

are clearly explained in order to be easily understood. 

We also present a graphical user interface software 

application that was built for facilitating the testing of 

our compiler and the analysis of the intermediate 

results. 
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I.  INTRODUCTION 

Compilers are still seen in an aura of mysthicism 
by the majority of software programmers. It it not only 
their intrinsic difficulty that is responsible for that, but 
also the manner in which their construction is 
presented in the literature, where too much accent is 
put on the mathematical aspects while too little is said 
about the practical techniques for the actual design and 
programming of a custom compiler. We do not deny 
in no way the outstanding quality of textbooks such as 
[1], [2], [3], [4], and [5] which present very well the 
theory of formal languages and compiler design. We 
only consider necessary to approach the subject of 
compiler implementation from a more simplistic and 
didactic perspective, going thus in a similar 
philosophy with papers like [6], [7], and [8]. We wish 
to contribute thus to facilitating the subject of compiler 
construction for a wide range of programmers. Even if 
the current state of the art in programming is more and 
more high-level, abilities such as those involved in 
constructing a compiler may prove to be very useful in 
various practical programming situations.  

Hence, we present in this paper a minimalist 
compiler that was realized in a didactic manner. We 
used for its implementation the C# language, which is 
a modern and very actual  programming language 
nowadays, our purpose being (beside others) to show 
practical means to transpose in this language the 
theoretic concepts underlying the construction of a 
compiler. The specificatins for our compiler can be 
found in Section II, and the presentation of its design 
and implementation are in Section III. In Section IV is 
presented an example of use for the resulted 
application and the paper is closed by presenting the 
conclusions in Section V. 

II. SPECIFICATIONS 

The hardware platform targeted by our compiler is 
a virtual microcontroller called Octissimo (that we 
also built for didactic purposes). Next is presented 
some information about this microcontroller. 

Octissimo is an 8-bit microcontroller that can 
perform arithmetic (addition and substraction) and 
logic operations (byte-wise as well as bit-wise). It 
contains a program memory of 64x16 bits and a data 
memory of 64x8 bits that it can access both directly 
and by the use of the stack operations. It has sixteen 8-
bit general purpose registers, called R0, R1, ... R15. It 
also has three 16-bit special purpose registers: IR 
(instruction register), which is used for storing the 
current instruction, SR (status register), which is used 
for storing flags (such as: Z (zero flag), C (carry flag), 
O (overflow flag), N (negative flag)) about the result 
of the previously performed operation, and  SP (Stack 
Pointer), which is used for addressing the next 
available element for storing data into the stack. The 
instructions supported by the Octissimo 
microcontroller are shown in Table I. 

For the implementation of our compiler we use a 
very actual language – C#. It is a modern and powerful 
language that allows multiple programming paradigms 
(especially procedural programming and object 
oriented programming) and offers various facilities for 
the programmer (such as garbage collection). Besides 
that, it allows the easy construction of a graphical user 
interface for the application – for instance, by using 
Windows Forms. The compiler was implemented as a 
C# application with a Windows Forms graphical user 
interface that allows the user to input the source code 
(written in the language recognized by our compiler, 
which is described in Section III) in a textbox and to 
execute the compilation steps by pushing a button.  
The result of compilation is a program written in 
machine code for the Octissimo microcontroller. In 
addition to the final result (shown in assembly 
language, in order to increase lisibility), our 
application allows the user to see the intermediate 
results of the compilation process (such as the list of 
tokens, the list of variables and the syntactic tree), as 
well as the eventual lexical or syntax errors that may 
occur due to incorrect source code written by the user 
in the input textbox. 
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TABLE I.  THE INSTRUCTION SET OF THE OCTISSIMO 

MICROCONTROLLER 

Crt. 

No. 

Instruction code 

Mnemonic Parameters Operation 

15:12 11:8 7:4 3:0 

1 0000 Value (12-bit) JNZ Val_12 if Z = 0 PC ← PC + 

Val_12 

2 0001 Value (12-bit) JPZ Val_12 if Z = 1 PC ← PC + 
Val_12 

3 0010 Value (12-bit) JNC Val_12 if C = 0 PC ← 

PC+Val_12 

4 0011 Value (12-bit) JPC Val_12 if C = 1 PC ← 
PC+Val_12 

5 0100 Value (12-bit) JNN Val_12 if N = 0 PC ← 

PC+Val_12 

6 0101 Value (12-bit) JPN Val_12 if N = 1 PC ← 
PC+Val_12 

7 0110 Value (12-bit) JNO Val_12 if O = 0 PC ← 

PC+Val_12 

8 0111 Value (12-bit) JPO Val_12 if O = 1 PC ← 

PC+Val_12 

9 1000 Value (12-bit) JMP Val_12 PC ← PC + Val_12 

10 1001 i Value (8-bit) MOV Ri , Val_8 Ri ← Val_8 

11 1010 i j k STR Ri , Rj, Rk ( RjRk ) ← Ri 

12 1011 i Value (8-bit) STR Ri , Val_8 (Val_8 ) ← Ri 

13 1100 i j k LDR Ri, Rj, Rk Ri ← ( Rj Rk ) 

14 1101 i Value (8-bit) LDR Ri , Val_8 Ri ← ( Val_8 ) 

15 1110 Value (12-bit) CALL Val_12 Call routine at 
Val_12 

16 1111 0000 i j MOV Ri , Rj Ri ← Rj 

17 1111 0001 i j ADD Ri , Rj Ri ← Ri + Rj 

18 1111 0010 i Val_4 ADD Ri , Val_4 Ri ← Ri + Val_4 

19 1111 0011 i j ADC Ri , Rj Ri ← Ri + Rj + 

Carry 

20 1111 0100 i j SUB Ri , Rj Ri ← Ri - Rj 

21 1111 0101 i Val_4 SUB Ri , Val 4 Ri ← Ri – Val_4 

22 1111 0110 i j SBC Ri , Rj Ri ← Ri - Rj - 

Carry 

23 1111 0111 i j AND Ri , Rj Ri ← Ri And Rj 

24 1111 1000 i j ORR Ri , Rj Ri ← Ri Or Rj 

25 1111 1001 i j XOR Ri , Rj Ri ← Ri Xor Rj 

26 1111 1010 i Bit SET Ri , Bit Ri (Bit) ← 1 

27 1111 1011 i Bit CLR Ri , Bit Ri (Bit) ← 0 

28 1111 1100 i j CMP Ri , Rj Set flags for          
SUB Ri, Rj 

29 1111 1101 0000 i INV Ri Ri – Negate bits 

30 1111 1101 0001 i SHL Ri Ri – Left shift 

31 1111 1101 0010 i SHR Ri Ri – Right shift 

32 1111 1101 0011 i ROL Ri Ri – Rotate left 

33 1111 1101 0100 i ROR Ri Ri – Rotate right 

34 1111 1101 0101 i PSH Ri Stack push 

35 1111 1101 0110 i POP Ri Stack pop 

36 1111 1101 0111 − RET  Return from CALL 

37 1111 1101 1000 − RTI  Ret. from interrupt 

38 1111 1101 1001 − ENI  Enable interrupts 

38 1111 1101 1010 − DSI  Disable interrupts 

40 1111 1101 1011 − NOP  Do nothing 

41 1111 1101 1100 − STP  Stop 

42 1111 1101 1101 −   

Available for 

extensions 

43 1111 1101 1110 −   

44 1111 1101 1111 −   

45 1111 111- − −   

TABLE II.  THE TOKEN TYPES ACCEPTED BY OUR COMPILER 

Token Regular expression 

(1) Identifier [a-zA-Z_]([a-zA-Z_0-9])* 

(2) Number 0|[1-9]([0-9])* 

(3) Separator ; 

(4) Equal  = 

(5) OpRel ==|!=|>|<|>=|<= 

(6) OpArit +|-|*|/|% 

(7) ParOpen ( 

(8) ParClose ) 

(9) BktOpen { 

(10) BktClose } 

(11) Main main 

(12) Int int 

(13) If if 

(14) Else else 

(15) While while 
 

III. DESIGN AND IMPLEMENTATION 

The compilation process is performed by a single 
pass through the input source code and it consists in 
three consecutive steps (lexical analysis, syntactic 
analysis, and code generation), the output of one step 
being the input of the next one. In the next part each of 
these three steps that are used by our compiler are 
presented.  

A. Lexical Analysis 

The role of the lexical analyser is to go through the 
source code character by character and to identify the 
lexemes, i.e. to split the source code into words that 
are understood by the compiler. It outputs a list of 
tokens, i.e. symbolic names for each of the types of 
lexemes encountered. While some lexemes are fixed-
form (such as the symbol "+" used for the addition 
operator), others can have various forms (such as the 
identifiers). For the latter category it is necessary to 
store in the token list not only the type of the lexeme, 
but also its value (i.e. the actual character sequence 
read from the source code). Hence, for the token list 
output by the lexical analyzer a structure that contains 
two fields – type and value – was used.  

The classes of tokens were defined by using 
regular expressions. Table II shows the regular 
expressions used for each of the token types 
recognized by our compiler. The expressions in Table 
II are written in the format known by the Unix tool 
"egrep". The matching of these expressions is done 
with a deterministic finite automaton. It can be noticed 
that the keywords of our language also match the 
expressions for the identifiers. In order to simplify the 
the automaton, the parts corresponding to the regular 
expressions for the keywords (which can be searched 
for by comparing each identifier found with the strings 
for each keyword) were removed. Therefore, the 
automaton (shown in Figure 1) is actually designed to 
accept only the first ten types of tokens from Table II. 
The software simulation of this deterministic finite 
automaton is done by starting from its start state and 
then moving from state to state (according to the 
transition diagram in Figure 1) by reading the source 
code one character at a time. When the automaton is in 
an accepting state, we move to another state only if the 



A Didactic Implementation of a Minimalist Compiler 29 

new state is also an accepting state. Otherwise we stay 
in the current state, we store the token found and we 
unread the last character read, by restarting the 
automaton from its start state. (The transitions that are 
not shown in Figure 1 move states q1, q2, ..., q17 to 
state q0, and state q-1 to state q-1.) Each token found 
is then stored in a data structure that contains, as we 
said before, the type and the value of the token. In 
order to facilitate the software simulation of the 
automaton, the transition diagram shown in Figure 1 
was stored in our program as a transition table, i.e. a 
matrix having as many rows as the number of states of 
the automaton and as many columns as the number of 
symbol types that can appear in the input word. An 
element t[i][j] in this matrix contains the index number 
of the destination state for state i when the input 
symbol is of type number j. 

Figure 1.  The deterministic finite automaton used by our       

lexical analyzer. 

 

B. Syntactic Analysis 

The input of the syntactic analyzer is the output of 
the lexical analyzer, that is a list of pairs (token type, 
token value). While the role of the lexical analyzer is 
to verify that the symbols in the source code make up 
valid words, the role of the syntactic analyzer is to 
verify that the words found in the source code by the 
lexical analyzer make up a correct phrase. 

The syntactic structures that are accepted by our 
compiler are specified by a context-free grammar. This 
grammar is shown in Table III. The variable 
Expression was not detailed in the table because (in 
over to simplify things) the expressions were treated 
separately. The expression parser reads the expression 
token by token and builds its postfix Polish form, 
which it then uses for building the syntax tree that 

corresponds to the expression. In order not to 
complicate things, all the operators were considered to 
be left to right associative and to have the same 
precedence (which can be modified by the use of 
parentheses). We must note that treating expressions 
separately was not mandatory. They could be included 
in the grammar shown in Table III by adding some 
more productions (as Table IV shows). 

TABLE III.  THE CONTEXT-FREE GRAMMAR USED BY OUR 

PARSER 

Program → <Main><ParOpen><ParClose> 
<BktOpen> Instructions 
<BktClose> 

Instructions → Instruction Instructions | ε 

Instruction → Declaration | Assignment | 
Decision | Repetition 

Declaration → <Int><Indentifier><Separator> 

Assignment → <Identifier><Equal>Expression 
<Separator> 

Decision → <If><ParOpen>Expression 
<ParClose><BktOpen> 
Instructions<BktClose><Else> 
<BktOpen>Instructions 
<BktClose> 

Repetition → <While><ParOpen>Expression 
<ParClose><BktOpen> 
Instructions<BktClose> 

TABLE IV.  A POSSIBLE GRAMMAR FOR HANDLING 

EXPRESSIONS 

Expression → Operand   RestExpr 

RestExpr → ε | Operator  Operand  RestExpr 

Operator → <OpArit> |  <OpRel> 

Operand → <Identifier>  |  <Number>  | 
<ParOpen> Expression 
<ParClose> 

 

The task of the syntactic analyzer is to go through 
the list of tokens element by elements and convert it to 
a syntax tree according to its grammar. This can be 
easily done by implementing a LL(1) parser. It can be 
done as a backtrack-free top-down parsing algorithm 
that is both efficient in terms on complexity and it can 
be easily implemented manually (as opposed to 
bottom-up parsers) [4]. This parser requires that the 
grammar is a LL(1) grammar (i.e. a grammar that is 
free from left recursion and that allows the choice of a 
production only by reading at most one character in 
advance). 

The parser is made of a collection of procedures 
(one for each of the variables in the grammar) that call 
each other recursively. The process consists in 
successive derivations starting from the start variable 
(that becomes the root of the syntax tree). The leaves 
of the resulting tree will be the tokens, and the inner 
nodes will be the variables. These derivations are 
performed for each production by verifying each token 
as its appears in the production body and by calling the 
corresponding procedures for each variable 
encountered. If at some point in the derivation process 
the parser can not select a production that fits the next 
token in the sequence, it generates a syntax error. 
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C. Code Generation 

The last step performed by our compiler receives 
as input the syntax tree generated by the parser and 
performs its depth-first traversal, in the same time 
generating at each step the corresponding instructions 
in the machine language known by our 
microcontroller. No optimization is made, and the 
variables are stored in memory in the order in which 
they are declared in the program. (In order to easily 
manipulate variables, we use an object of type 
Dictionary, which allows us to rapidly search variables 
by their name.) 

As an example, for the following code sequence 
(written in the language recognized by our compiler) 

var a; 
a = 10; 

the code that results after the code generation step is 
the following (written in assembly language, for a 
better lisibility): 

MOV R1, hA 
MOV R2, b00000000 
MOV R3, b00000000 
STR R1, R2, R3 

We made the assumption that the variable named a 
is the first variable declared in the program, hence it 
will be stored at the address [0000 0000 0000 0000] in 

the data memory. The STR instruction in the source 
code  performs the operation [0000 0000 0000 0000] = 
0000 1010. The [R2R3] pair addresses the data 
memory, and R1 contains the value to be stored at that 
address. 

IV. RESULTS AND DISCUSSION 

An example of using our application for a very 
simple program is shown in Figure 2. The graphical 
user interface allows (as it can be seen in the figure) 
the input of the source code (in the textbox on the left), 
as well as the visualization of the results (written in 
assembly language) and of the errors (in the bottom 
panel),  and (on the right) the visualization of the 
program tokens and variables. The syntax tree can be 
seen as well by checking the corresponding checkbox 
on the main window of the application. It is shown in 
the bottom image in Figure 2. Figure 3 shows another 
example of use for the application. 

The application is useful for didactic purposes, as 
it helps the user understand the basic concepts 
involved in implementing a compiler. The langugage 
is simplistic – it does not allow multiple data types or 
function calls. Nevertheless, it allows the 
implementation of various algorithms that manipulate 
integer scalar values (such as the computation of the 
greatest common divider or the computation of 
Fibonacci numbers). 

Figure 2.  The graphical user interface of the compiler showing the compilation of a sample program. 
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Figure 3.  The graphical user interface of the compiler showing the compilation of a sample program containing a numeric expression. 

 

 

V. CONCLUSION 

In this paper a compiler implementation was 
presented that did not require any code generation 
tools such as Lex and Yacc. The design and 
implementation steps are simplified and explained 
clearly in order to facilitate their understanding. A 
graphical user interface application that allows the 
user to input source code and visualize the 
intermediate steps performed when compiling that 
code was built.  

The application is useful for didactic purposes, by 
facilitating the understanding of the methodology of 
manually implementing a compiler for a structured 
programming language.  

The next step in developing our compiler is to 
introduce support for arrays and subroutines. The 
design methodology presented here can also be 

extended to construct compilers for languages 
supporting other programming paradigms.  
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