
Journal of Electrical Engineering, Electronics, Control and Computer Science –

JEEECCS, Volume 1, Issue 1, pages 26-32, 2015

A Didactic Implementation of a Minimalist

Compiler

Florin-Marian Bîrleanu

Dep. of Electronics, Comp. Sc.

and Elect. Eng.

FECC, University of Pitesti

Pitesti, Romania

florin.birleanu@upit.ro

Cosmin-Ionuţ Măciucă

Kiwee Comunicatii – AG

Interactive

Bucharest, Romania

ciuk92@yahoo.com

Bogdan-Adrian Enache

 Dep. of Electronics, Comp. Sc.

and Elect. Eng.

FECC, University of Pitesti

Pitesti, Romania

bogdan.enache@upit.ro

Abstract – This paper presents a manual implementation

using the C# language of a minimalist compiler for

didactic purposes. The design and implementation steps

are clearly explained in order to be easily understood.

We also present a graphical user interface software

application that was built for facilitating the testing of

our compiler and the analysis of the intermediate

results.

Keywords - formal languages; regular expressions,

context-free grammars; compilers; scanning; top-down

parsing

I. INTRODUCTION

Compilers are still seen in an aura of mysthicism
by the majority of software programmers. It it not only
their intrinsic difficulty that is responsible for that, but
also the manner in which their construction is
presented in the literature, where too much accent is
put on the mathematical aspects while too little is said
about the practical techniques for the actual design and
programming of a custom compiler. We do not deny
in no way the outstanding quality of textbooks such as
[1], [2], [3], [4], and [5] which present very well the
theory of formal languages and compiler design. We
only consider necessary to approach the subject of
compiler implementation from a more simplistic and
didactic perspective, going thus in a similar
philosophy with papers like [6], [7], and [8]. We wish
to contribute thus to facilitating the subject of compiler
construction for a wide range of programmers. Even if
the current state of the art in programming is more and
more high-level, abilities such as those involved in
constructing a compiler may prove to be very useful in
various practical programming situations.

Hence, we present in this paper a minimalist
compiler that was realized in a didactic manner. We
used for its implementation the C# language, which is
a modern and very actual programming language
nowadays, our purpose being (beside others) to show
practical means to transpose in this language the
theoretic concepts underlying the construction of a
compiler. The specificatins for our compiler can be
found in Section II, and the presentation of its design
and implementation are in Section III. In Section IV is
presented an example of use for the resulted
application and the paper is closed by presenting the
conclusions in Section V.

II. SPECIFICATIONS

The hardware platform targeted by our compiler is
a virtual microcontroller called Octissimo (that we
also built for didactic purposes). Next is presented
some information about this microcontroller.

Octissimo is an 8-bit microcontroller that can
perform arithmetic (addition and substraction) and
logic operations (byte-wise as well as bit-wise). It
contains a program memory of 64x16 bits and a data
memory of 64x8 bits that it can access both directly
and by the use of the stack operations. It has sixteen 8-
bit general purpose registers, called R0, R1, ... R15. It
also has three 16-bit special purpose registers: IR
(instruction register), which is used for storing the
current instruction, SR (status register), which is used
for storing flags (such as: Z (zero flag), C (carry flag),
O (overflow flag), N (negative flag)) about the result
of the previously performed operation, and SP (Stack
Pointer), which is used for addressing the next
available element for storing data into the stack. The
instructions supported by the Octissimo
microcontroller are shown in Table I.

For the implementation of our compiler we use a
very actual language – C#. It is a modern and powerful
language that allows multiple programming paradigms
(especially procedural programming and object
oriented programming) and offers various facilities for
the programmer (such as garbage collection). Besides
that, it allows the easy construction of a graphical user
interface for the application – for instance, by using
Windows Forms. The compiler was implemented as a
C# application with a Windows Forms graphical user
interface that allows the user to input the source code
(written in the language recognized by our compiler,
which is described in Section III) in a textbox and to
execute the compilation steps by pushing a button.
The result of compilation is a program written in
machine code for the Octissimo microcontroller. In
addition to the final result (shown in assembly
language, in order to increase lisibility), our
application allows the user to see the intermediate
results of the compilation process (such as the list of
tokens, the list of variables and the syntactic tree), as
well as the eventual lexical or syntax errors that may
occur due to incorrect source code written by the user
in the input textbox.

F.-M. Bîrleanu, C.-I. Măciucă, B.-A. Enache 28

TABLE I. THE INSTRUCTION SET OF THE OCTISSIMO

MICROCONTROLLER

Crt.

No.

Instruction code

Mnemonic Parameters Operation

15:12 11:8 7:4 3:0

1 0000 Value (12-bit) JNZ Val_12 if Z = 0 PC ← PC +

Val_12

2 0001 Value (12-bit) JPZ Val_12 if Z = 1 PC ← PC +
Val_12

3 0010 Value (12-bit) JNC Val_12 if C = 0 PC ←

PC+Val_12

4 0011 Value (12-bit) JPC Val_12 if C = 1 PC ←
PC+Val_12

5 0100 Value (12-bit) JNN Val_12 if N = 0 PC ←

PC+Val_12

6 0101 Value (12-bit) JPN Val_12 if N = 1 PC ←
PC+Val_12

7 0110 Value (12-bit) JNO Val_12 if O = 0 PC ←

PC+Val_12

8 0111 Value (12-bit) JPO Val_12 if O = 1 PC ←

PC+Val_12

9 1000 Value (12-bit) JMP Val_12 PC ← PC + Val_12

10 1001 i Value (8-bit) MOV Ri , Val_8 Ri ← Val_8

11 1010 i j k STR Ri , Rj, Rk (RjRk) ← Ri

12 1011 i Value (8-bit) STR Ri , Val_8 (Val_8) ← Ri

13 1100 i j k LDR Ri, Rj, Rk Ri ← (Rj Rk)

14 1101 i Value (8-bit) LDR Ri , Val_8 Ri ← (Val_8)

15 1110 Value (12-bit) CALL Val_12 Call routine at
Val_12

16 1111 0000 i j MOV Ri , Rj Ri ← Rj

17 1111 0001 i j ADD Ri , Rj Ri ← Ri + Rj

18 1111 0010 i Val_4 ADD Ri , Val_4 Ri ← Ri + Val_4

19 1111 0011 i j ADC Ri , Rj Ri ← Ri + Rj +

Carry

20 1111 0100 i j SUB Ri , Rj Ri ← Ri - Rj

21 1111 0101 i Val_4 SUB Ri , Val 4 Ri ← Ri – Val_4

22 1111 0110 i j SBC Ri , Rj Ri ← Ri - Rj -

Carry

23 1111 0111 i j AND Ri , Rj Ri ← Ri And Rj

24 1111 1000 i j ORR Ri , Rj Ri ← Ri Or Rj

25 1111 1001 i j XOR Ri , Rj Ri ← Ri Xor Rj

26 1111 1010 i Bit SET Ri , Bit Ri (Bit) ← 1

27 1111 1011 i Bit CLR Ri , Bit Ri (Bit) ← 0

28 1111 1100 i j CMP Ri , Rj Set flags for
SUB Ri, Rj

29 1111 1101 0000 i INV Ri Ri – Negate bits

30 1111 1101 0001 i SHL Ri Ri – Left shift

31 1111 1101 0010 i SHR Ri Ri – Right shift

32 1111 1101 0011 i ROL Ri Ri – Rotate left

33 1111 1101 0100 i ROR Ri Ri – Rotate right

34 1111 1101 0101 i PSH Ri Stack push

35 1111 1101 0110 i POP Ri Stack pop

36 1111 1101 0111 − RET Return from CALL

37 1111 1101 1000 − RTI Ret. from interrupt

38 1111 1101 1001 − ENI Enable interrupts

38 1111 1101 1010 − DSI Disable interrupts

40 1111 1101 1011 − NOP Do nothing

41 1111 1101 1100 − STP Stop

42 1111 1101 1101 −

Available for

extensions

43 1111 1101 1110 −

44 1111 1101 1111 −

45 1111 111- − −

TABLE II. THE TOKEN TYPES ACCEPTED BY OUR COMPILER

Token Regular expression

(1) Identifier [a-zA-Z_]([a-zA-Z_0-9])*

(2) Number 0|[1-9]([0-9])*

(3) Separator ;

(4) Equal =

(5) OpRel ==|!=|>|<|>=|<=

(6) OpArit +|-|*|/|%

(7) ParOpen (

(8) ParClose)

(9) BktOpen {

(10) BktClose }

(11) Main main

(12) Int int

(13) If if

(14) Else else

(15) While while

III. DESIGN AND IMPLEMENTATION

The compilation process is performed by a single
pass through the input source code and it consists in
three consecutive steps (lexical analysis, syntactic
analysis, and code generation), the output of one step
being the input of the next one. In the next part each of
these three steps that are used by our compiler are
presented.

A. Lexical Analysis

The role of the lexical analyser is to go through the
source code character by character and to identify the
lexemes, i.e. to split the source code into words that
are understood by the compiler. It outputs a list of
tokens, i.e. symbolic names for each of the types of
lexemes encountered. While some lexemes are fixed-
form (such as the symbol "+" used for the addition
operator), others can have various forms (such as the
identifiers). For the latter category it is necessary to
store in the token list not only the type of the lexeme,
but also its value (i.e. the actual character sequence
read from the source code). Hence, for the token list
output by the lexical analyzer a structure that contains
two fields – type and value – was used.

The classes of tokens were defined by using
regular expressions. Table II shows the regular
expressions used for each of the token types
recognized by our compiler. The expressions in Table
II are written in the format known by the Unix tool
"egrep". The matching of these expressions is done
with a deterministic finite automaton. It can be noticed
that the keywords of our language also match the
expressions for the identifiers. In order to simplify the
the automaton, the parts corresponding to the regular
expressions for the keywords (which can be searched
for by comparing each identifier found with the strings
for each keyword) were removed. Therefore, the
automaton (shown in Figure 1) is actually designed to
accept only the first ten types of tokens from Table II.
The software simulation of this deterministic finite
automaton is done by starting from its start state and
then moving from state to state (according to the
transition diagram in Figure 1) by reading the source
code one character at a time. When the automaton is in
an accepting state, we move to another state only if the

A Didactic Implementation of a Minimalist Compiler 29

new state is also an accepting state. Otherwise we stay
in the current state, we store the token found and we
unread the last character read, by restarting the
automaton from its start state. (The transitions that are
not shown in Figure 1 move states q1, q2, ..., q17 to
state q0, and state q-1 to state q-1.) Each token found
is then stored in a data structure that contains, as we
said before, the type and the value of the token. In
order to facilitate the software simulation of the
automaton, the transition diagram shown in Figure 1
was stored in our program as a transition table, i.e. a
matrix having as many rows as the number of states of
the automaton and as many columns as the number of
symbol types that can appear in the input word. An
element t[i][j] in this matrix contains the index number
of the destination state for state i when the input
symbol is of type number j.

Figure 1. The deterministic finite automaton used by our

lexical analyzer.

B. Syntactic Analysis

The input of the syntactic analyzer is the output of
the lexical analyzer, that is a list of pairs (token type,
token value). While the role of the lexical analyzer is
to verify that the symbols in the source code make up
valid words, the role of the syntactic analyzer is to
verify that the words found in the source code by the
lexical analyzer make up a correct phrase.

The syntactic structures that are accepted by our
compiler are specified by a context-free grammar. This
grammar is shown in Table III. The variable
Expression was not detailed in the table because (in
over to simplify things) the expressions were treated
separately. The expression parser reads the expression
token by token and builds its postfix Polish form,
which it then uses for building the syntax tree that

corresponds to the expression. In order not to
complicate things, all the operators were considered to
be left to right associative and to have the same
precedence (which can be modified by the use of
parentheses). We must note that treating expressions
separately was not mandatory. They could be included
in the grammar shown in Table III by adding some
more productions (as Table IV shows).

TABLE III. THE CONTEXT-FREE GRAMMAR USED BY OUR

PARSER

Program → <Main><ParOpen><ParClose>
<BktOpen> Instructions
<BktClose>

Instructions → Instruction Instructions | ε

Instruction → Declaration | Assignment |
Decision | Repetition

Declaration → <Int><Indentifier><Separator>

Assignment → <Identifier><Equal>Expression
<Separator>

Decision → <If><ParOpen>Expression
<ParClose><BktOpen>
Instructions<BktClose><Else>
<BktOpen>Instructions
<BktClose>

Repetition → <While><ParOpen>Expression
<ParClose><BktOpen>
Instructions<BktClose>

TABLE IV. A POSSIBLE GRAMMAR FOR HANDLING

EXPRESSIONS

Expression → Operand RestExpr

RestExpr → ε | Operator Operand RestExpr

Operator → <OpArit> | <OpRel>

Operand → <Identifier> | <Number> |
<ParOpen> Expression
<ParClose>

The task of the syntactic analyzer is to go through
the list of tokens element by elements and convert it to
a syntax tree according to its grammar. This can be
easily done by implementing a LL(1) parser. It can be
done as a backtrack-free top-down parsing algorithm
that is both efficient in terms on complexity and it can
be easily implemented manually (as opposed to
bottom-up parsers) [4]. This parser requires that the
grammar is a LL(1) grammar (i.e. a grammar that is
free from left recursion and that allows the choice of a
production only by reading at most one character in
advance).

The parser is made of a collection of procedures
(one for each of the variables in the grammar) that call
each other recursively. The process consists in
successive derivations starting from the start variable
(that becomes the root of the syntax tree). The leaves
of the resulting tree will be the tokens, and the inner
nodes will be the variables. These derivations are
performed for each production by verifying each token
as its appears in the production body and by calling the
corresponding procedures for each variable
encountered. If at some point in the derivation process
the parser can not select a production that fits the next
token in the sequence, it generates a syntax error.

F.-M. Bîrleanu, C.-I. Măciucă, B.-A. Enache 30

C. Code Generation

The last step performed by our compiler receives
as input the syntax tree generated by the parser and
performs its depth-first traversal, in the same time
generating at each step the corresponding instructions
in the machine language known by our
microcontroller. No optimization is made, and the
variables are stored in memory in the order in which
they are declared in the program. (In order to easily
manipulate variables, we use an object of type
Dictionary, which allows us to rapidly search variables
by their name.)

As an example, for the following code sequence
(written in the language recognized by our compiler)

var a;
a = 10;

the code that results after the code generation step is
the following (written in assembly language, for a
better lisibility):

MOV R1, hA
MOV R2, b00000000
MOV R3, b00000000
STR R1, R2, R3

We made the assumption that the variable named a
is the first variable declared in the program, hence it
will be stored at the address [0000 0000 0000 0000] in

the data memory. The STR instruction in the source
code performs the operation [0000 0000 0000 0000] =
0000 1010. The [R2R3] pair addresses the data
memory, and R1 contains the value to be stored at that
address.

IV. RESULTS AND DISCUSSION

An example of using our application for a very
simple program is shown in Figure 2. The graphical
user interface allows (as it can be seen in the figure)
the input of the source code (in the textbox on the left),
as well as the visualization of the results (written in
assembly language) and of the errors (in the bottom
panel), and (on the right) the visualization of the
program tokens and variables. The syntax tree can be
seen as well by checking the corresponding checkbox
on the main window of the application. It is shown in
the bottom image in Figure 2. Figure 3 shows another
example of use for the application.

The application is useful for didactic purposes, as
it helps the user understand the basic concepts
involved in implementing a compiler. The langugage
is simplistic – it does not allow multiple data types or
function calls. Nevertheless, it allows the
implementation of various algorithms that manipulate
integer scalar values (such as the computation of the
greatest common divider or the computation of
Fibonacci numbers).

Figure 2. The graphical user interface of the compiler showing the compilation of a sample program.

A Didactic Implementation of a Minimalist Compiler 31

Figure 3. The graphical user interface of the compiler showing the compilation of a sample program containing a numeric expression.

V. CONCLUSION

In this paper a compiler implementation was
presented that did not require any code generation
tools such as Lex and Yacc. The design and
implementation steps are simplified and explained
clearly in order to facilitate their understanding. A
graphical user interface application that allows the
user to input source code and visualize the
intermediate steps performed when compiling that
code was built.

The application is useful for didactic purposes, by
facilitating the understanding of the methodology of
manually implementing a compiler for a structured
programming language.

The next step in developing our compiler is to
introduce support for arrays and subroutines. The
design methodology presented here can also be

extended to construct compilers for languages
supporting other programming paradigms.

REFERENCES

[1] J. E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to
Automata Theory, Languages, and Computation (Second
Edition), Addison-Wesley, 2001.

[2] P. Linz, An Introduction to Formal Languages and Automata
(Third Edition), Jones and Bartlett Publihsers, 2001.

[3] A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman, Compilers.
Principles, Techniques, & Tools (Second Edition), Pearson
Education, 2007.

[4] K.D. Cooper, L. Torczon, Engineering a Compiler (Second
Edition), Elsevier, 2012.

[5] D. Grune, K. van Reeuwijk, H.E. Bal, C.J.H. Jacobs, K.
Langendoen, Modern Compiler Design (Second Edition),
Springer Science+Business Media New York, 2012.

[6] G. Evangelidis, V. Dagdilelis, M. Satratzemi, V. Efopoulos,
“X-compiler: yet another integrated novice programming

F.-M. Bîrleanu, C.-I. Măciucă, B.-A. Enache 32

environment,” Proceedings of IEEE International Conference
on Advanced Learning Technologies, 2001.

[7] D. Sarkar, O. Waddell, R. Kent Dybvig, “A nanopass
infrastructure for compiler education,” Proceedings of the

ninth ACM SIGPLAN international conference on Functional
programming, vol. 39 (9), pp. 201-212, September 2004.

[8] A. Ghoulum, “An incremental approach to compiler
construction,” Proceedings of the 2006 Scheme and
Functional Programming Workshop, pp. 27-37, 2006.

