
Journal of Electrical Engineering, Electronics, Control and Computer Science –

JEEECCS, Volume 5, Issue 17, pages 1-10, 2019

An Efficient (Low Resources) Modular

Hardware Implementation of the AES

Algorithm

Paul Burciu

PhD. Electronics Engineering

Military Technical Academy

Bucharest, Romania

pburciu@yahoo.com

Abstract - The main goal of this paper is to offer a

practical modular approach concerning a hardware

implementation of the AES cryptographic algorithm,

based on a Finite State Machine with Datapath (FSMD)

structure. Beyond finding two levels of modularity to be

acquired, first referring to AES cryptographic

operations over bytes or columns, and the second

referring to AES macro-operations, such as

cryptographic rounds or key expansion process, this

paper provides an optimized solution, in terms of

efficient use of FPGA's resources and of speed, to one of

our present days' technology challenges, that is, "speed

vs. costs". Another goal is to study the consequences, in

terms of advantages and disadvantages, of choosing

certain design solutions for the hardware

implementation on low resources FPGAs.

Keywords-Hardware implementation; crytpo-system;

efficiency; modularity; FSMD; block/subblock

I. INTRODUCTION

Modularity is one of today’s key factors
concerning either software and hardware
implementations. Cryptography does not make
exception to this tendency, thus the main objective of
this paper being author’s approach regarding a
modular hardware implementation of the AES
symmetric crypto-system, using a Finite State
Machine with Datapath (FSMD) structure. The main
idea of this implementation is to modularly integrate
every cryptographic operation of AES, such as bytes’
substitution or shifting, column multiplication on
Galois Field, or adding round keys, as a first level of
modularity, and then, every macro-operation of AES,
such as the encryption/decryption round or the key
expansion, as a second level of modularity.

Consequently, as a targeted major advantage, this
approach aims to provide the developers with the
possibility of upgrading modules at both levels,
together with efficiency concerning the use of as low
FPGA’s platform resources as possible. A pure
parallel (pipelined) approach was not possible in this
case because this would imply the implementation of
all encryption/decryption rounds, thus easily
exceeding the available hardware resources. Future
works will try to find a solution, if any, for a pipelined

implementation of the same algorithm on a low
resources FPGA platform.

From a speed perspective, another targeted
advantage is storing keys in RAM, but comparing to
an iterative loop solution, this came with the
disadvantage of an increased number of necessary
clock cycles, the key expansion process being run
before the encryption/decryption process. Even though
this added 10 more clock cycles before the main
process, the speed is not significantly reduced
comparing to that of the iterative loop solution.

This paper offers an efficient (low resources)
modular hardware implementation of an AES crypto-
system ([1]), studying the implication of different
design solutions susceptible to be used, pointing
advantages and disadvantages of such an approach. It
essentially contains 4 chapters, as follows: Chapter I
makes an introduction to the topics, Chapter II
provides a brief presentation of the theoretical basis,
Chapter III details the experimental procedure, and
Chapter IV gives conclusions and future topics of
research on the field.

II. THEORETICAL ASPECTS

On the first level of modularity, the cryptographic
operations are integrated as modules in the mechanism
of the appropriate round. In terms of FPGA’s
resources, besides being an advantage, this approach
might be appreciated as the most economic/efficient
because all individual operations are combined and
iterated through the algorithm, thus with no
possibilities to reduce them. In terms of speed, only a
parallel (pipelined) implementation may be more
efficient, this being a goal for future studies when
dealing with limited resources FPGA platforms (i.e.
Xilinx Spartan-6).

On the second level of modularity, the macro-
operations of AES are integrated as four modules,
such as first round, one round, last round, and key
expansion. Again, in terms of FPGA’s resources,
besides being another advantage, this might be the
most economic/efficient implementation of an AES
crypto-system because these are the minimal structures
to be combined and iterated. The key expansion

Paul Burciu

2

module has two components, a one round key
expansion submodule which delivers every expanded
round key to a RAM submodule, this being the place
to store all the round keys and, then, the one to select
the appropriate round key to be delivered to the
crypto-system. Despite the fact that using RAM might
be considered as an advantage, the experimental work
proved the opposite because of a small speed loss. The
key expansion has also an FSMD structure in order to
have the control and data paths synchronized with the
main FSMD, that is, the encryption/decryption crypto-
system. The advantage of choosing an FSMD structure
stands on simplicity of design conception by
comparison to an iterative loop structure, that is, more
complex to deal with (Fig. 1). In terms of speed, once
more, only a parallel (pipelined) implementation may
be more efficient, this being subject for future studies.

Figure 1. Iterative loop vs. Pipeline structure [2]

Even if a third level of modularity might exist,
referring to basic operations like column
multiplications on Galois Field by some binary hex
coded values (i.e. x“02”, x“03”, x“09”, x“0B”, x“0D”,
x“0E”), this paper will not treat it because, in terms of
speed and resource consumption, there are more
efficient methods to implement it. One such method,
which may be another advantage to be pointed on this
paper, is calling each of the multiplication operations
as functions from the VHDL package, combined with
the decomposition into combined multiplications by
x“02” and x“03” of every multiplication by numbers
bigger than x“03” (i.e. x“09”, x“0B”, x“0D”, or
x“0E”) ([2]). By comparison to accessing operations
through VHDL components, accessing functions from
VHDL package is generally faster, in terms of
throughput, this being calculated by (1) ([2]), but often
efficient, in terms of consumed resources, as proved
by some of previous author’s experiments with their
results shown by TABLE I and TABLE II (Chapter
III).

(1)

III. EXPERIMENTAL WORK

All implementations and simulations were done by
using Xilinx ISE Design Suite (shareware version
14.7) ([3]), on a Xilinx Spartan-6 platform (Fig. 2), a
low resources FPGA device, as well as, for
comparison, on a Xilinx Virtex-5 platform (Fig. 3), a
well-equipped FPGA device.

From TABLE I and TABLE II it may be found
that all the presented implementations have low
percentages of resources consumed from the available
that were summarized by TABLE III.

Figure 2. Xilinx Spartan-6 FPGA platform [4]

Figure 3. Xilinx Virtex-5 FPGA platform [4]

TABLE I. THROUGHPUT [GBPS] AND CONSUMED

RESOURCES] COMPARISON (XILINX SPARTAN-6)

VHDL

Pack.

Function

Enc.

VHDL

Comp.

Enc.

VHDL

Pack.

Function

Dec.V1

VHDL

Comp.

Dec.V1

VHDL

Pack.

Function

Dec.V2

VHDL

Comp.

Dec.V2

2.347 2.023 1.706 1,862 1.540 1.885

6% 6% 7% 7% 6% 7%

TABLE II. THROUGHPUT [GBPS] AND CONSUMED

RESOURCES] COMPARISON (XILINX VIRTEX-5)

VHDL

Pack.

Function

Enc.

VHDL

Comp.

Enc.

VHDL

Pack.

Function

Dec.V1

VHDL

Comp.

Dec.V1

VHDL

Pack.

Function

Dec.V2

VHDL

Comp.

Dec.V2

3.660 3.660 2,587 2,420 2,715 2,436

4% 5% 5% 6% 5% 5%

TABLE III. COMPARISON BETWEEN AVAILABLE RESOURCES

OF XILINX SPARTAN-6 AND VIRTEX-5 FPGA DEVICES [4]

 Spartan-6 Virtex-5

Logic Cells 3,840  147,443 19,968  331,776

LUTs 2,400  92,152 19,200  207,360

Flip Flops 4,800  184,304 19,200  207,360

Distributed RAM(KB) 75  1,355 210  4,200

DSP48 Slices 8  180 24  1,056

BRAM(Kb) 216  4,824 936  18,576

CMTs 2  6 1  6

Maximum GTP
Transceivers

0  8 0  24

Total I/O Banks 4  6 7  33

Max User I/O 132  576 172  1,200

This design of an AES-128 crypto-system
implementation using an FSMD architecture combines
specific elements of iterative loops and pipeline
structures (Fig. 1). Because of limited hardware
resources of the FPGA device, a pipeline
implementation, meaning of all encryption/decryption
rounds of the algorithm and with registers between
rounds, was not possible. Therefore, the approached
design strategy was to implement only the first and the

An Efficient (Low Resources) Modular Hardware Implementation of the AES Algorithm

3

last round, which are different from the others (the
first round only includes the AddRoundKey
transformation applied to the plaintext/ciphertext and
the initial key, while the last round only includes 3 of
the 4 transformations, that is, SubBytes/ InvSubBytes,
ShiftRows/InvShiftRows, and AddRoundKey, with the
MixColumns/InvMixColumns transformation missing),
together with only a complete one round (including all
4 round transformations) out of the 9 AES-128
encryption/decryption rounds, which is 9 times run in
an iterative loop by the FSMD controller (Fig. 4, 5).

Figure 4. Encryption block diagram

Figure 5. Decryption block diagram

The above figures are clearly expressing a modular
architecture of the AES-128 implementation, which is
organized on 2 levels of modularity, as follows:

 On the first level, we have all 4
transformations included as subblocks of an
AES-128 round, together with one round key
expansion and RAM, as subblocks of the key
expansion process.

 On the second level, we have 3 different types
of AES-128 round blocks, as well as the key
expansion block.

This modular hardware structure gives developers
the advantage of upgrading modules at both levels, as
well as efficiency of resource consumption.

The programming solution is an optimized
combination between VHDL architectural entities,
instantiations, and a package, while the hardware
functional blocks are described behaviorally by
fragments of programs/subprograms which will be
finally assembled into programs/subprograms.

In order to minimize used hardware resources on a
complete round, the sequence of transformations is:

 SubBytes, ShiftRows, MixColumns, and
AddRoundKey, for AES-128 encryption;

 InvSubBytes, InvShiftRows, AddRoundKey,
and InvMixColumns, for AES-128 decryption.

In case of decryption algorithm, the same objective
may be achieved by applying the algebraic distributive
law ([2]), concerning multiplication on Galois Field

(denoted as ) and XOR (denoted as ) operations,
thus making InvMixColumns and AddRoundKey
transformations interchangeable (2). The advantage of
choosing this solution, both in terms of speed and
consumed resources, may be proved by author’s
previous experiments (TABLE IV and TABLE V).

     ZXYXZYX  (2)

where  82,, GFZYX  .

TABLE IV. THROUGHPUT [GBPS] AND CONSUMED RESOURCES

COMPARISON (XILINX SPARTAN-6)

Dec.V1

Without

DistribLaw

Dec.V2

With

DistribLaw

Dec.V1

Without

DistribLaw

Dec.V2

With

DistribLaw

1.706 1.540 1,862 1.885

7% 6% 7% 7%

TABLE V. THROUGHPUT [GBPS] AND CONSUMED RESOURCES

COMPARISON (XILINX VIRTEX-5)

Dec.V1

Without

DistribLaw

Dec.V2

With

DistribLaw

Dec.V1

Without

DistribLaw

Dec.V2

With

DistribLaw

2,587 2,715 2,420 2,436

5% 5% 6% 5%

The design of AES-128 hardware implementation
essentially consists of establishing the main
encryption/decryption control signals together with
those to be applied to, that is, data signals, resulting in
a main signals diagram (Fig. 6) which will be further
completed by regular signals.

Figure 6. Main signals diagram of encryption (similar to the

decryption version)

Paul Burciu

4

This diagram shows synchronization between the
system clock and all the signals that are implied in
loading the plaintext/ciphertext and the initial key, in
beginning and ending of encryption/decryption
process, or in forming the output message, that is, the
ciphertext/plaintext, but not with the RESET signal
which is asynchronous. The activation of all these
signals was done by the rising edge of the system
clock. PROC_ACK signal confirms the possibility of
processing data to the controller. Activation of this
signal is mandatory in order to begin the key
expansion, by using the BEGIN_KEXP signal, and to
run it for 10 clock cycles. After the key expansion
ending, PROC_ACK is again activated in order to
confirm the possibility of beginning the
encryption/decryption process. After the
plaintext/ciphertext (denoted as PTXT_INP/
CTXT_INP) and the initial key (denoted as
KEY_INP) were loaded through a LOAD signal, and
after the encryption/decryption beginning signal
(denoted as BEGIN_ENC/ BEGIN_DEC) was
activated, it takes 10 clock cycles for this process to be
fulfilled, until the END_ENC/ END_DEC signal is
activated and the output (denoted as CTXT_OUT/
PTXT_OUT) is obtained.

The FSMD structured block will be described by
an ASMD chart (Algorithmic State Machine with
Datapath) which will serve as a basis for the VHDL
program of the implementation (Fig. 7).

Figure 7. Encryption/Decryption controller ASMD

The ASMD chart contains a minimum of 5 FSMD
states, namely:

 IDLE is the initial state, when PROC_ACK is
activated in order to acknowledge the
possibility of beginning the key expansion
process, if and only if the specific signal, that
is, BEGIN_KEXP is activated; the
encryption/decryption ending signal (i.e.
END_ENC/END_DEC) is deactivated and the
round counter, denoted as KEXP_COUNT, is

set to a binary value of "0000" (i.e. decimal
value of 0); activation of BEGIN_KEXP
means transition to the next state, namely
KEYEXPANSION, while deactivation of it
keeps KEXP_COUNT on the initial position
of "0000".

 KEYEXPANSION is meant for the key
expansion process, when PROC_ACK and
END_ENC signals are deactivated, and the
round counter has still a value of "0000"; the
activation of KEXP_ACK means transition to
the next state, that is, FIRSTROUND, while
deactivation of it means the round counter
remains "0000".

 FIRSTROUND is the first
encryption/decryption round, when
PROC_ACK is again activated in order to
acknowledge the possibility of beginning the
encryption/decryption process, while
END_ENC is disabled and the round counter
is stored on the counter register, denoted as
REG_COUNT; activation of the
encryption/decryption beginning signal (i.e.
BEGIN_ENC) means transition to the next
state, that is, ONEROUND, while deactivation
of it means the round counter takes its value
from the counter register.

 ONEROUND means a complete
encryption/decryption round, when
PROC_ACK is deactivated, as well as the
encryption/decryption ending signal, while the
round counter still takes its value from the
counter register; if the counter register has
achieved a binary value of "1010" (i.e.
decimal value of 10), we have a transition to
the next state, that is, LASTROUND, but if not,
the round counter takes its next value from the
counter register.

 LASTROUND is the final
encryption/decryption round, when
PROC_ACK is still deactivated, the
encryption/decryption ending signal is
activated and the round counter’s value is 10.

This sequence of states is setting out 4 hardware
blocks/modules of encryption/decryption (Fig. 4, 5), as
follows:

 The key expansion block;

 The first round block;

 The one round block;

 The last round block.

Like the encryption/decryption controller, the key
expansion block is also implemented as an FSMD
structure which includes 2 subblocks, namely: one
round key expansion and RAM. The FSMD structure
design of this block began with the conception of a
main encryption/decryption control signals diagram
(Fig. 8).

An Efficient (Low Resources) Modular Hardware Implementation of the AES Algorithm

5

Figure 8. Main signals diagram of key expansion (similar to the

decryption version)

The main signals diagram of key expansion shows
synchronization between the system clock and all the
signals that are implied in loading the key, in
beginning and ending of the key expansion, or in
forming the output message, that is, the round key, the
activation of all these signals being done by the rising
edge of the system clock. Key expansion main signals
were, as follows: KEXP_INP, the initial key which is
introduced while the initiation of key expansion,
COUNT, that is, the counter of encryption/decryption
rounds, BEGIN_KEXP, which is responsible for key
expansion’s beginning, END_KEXP, being the signal
to activate the end of key expansion process after 10
clock cycles from its start, and finally, KEXP_OUT,
that is, the output round key.

A disadvantage of this implementation is that key
expansion is run before encryption/decryption, thus
adding 10 more clock cycles to the main process, but
offering the advantage of storing keys in RAM, while
speed and resource consumption still have reasonable
values (Appendix A), by comparison to the iterative
loop with VHDL components, which runs for 11 clock
cycles. The explanation is that the FSMD structure
used Block RAM/FIFO resources to increase speed.
Hence, if these processes were simultaneous, the
FSMD throughput would be double, thus bringing it
close to previous implementation. Therefore, a goal of
the future work will be making encryption/decryption
and key expansion simultaneous.

Another advantage of the FSMD structure is that it
used significantly less bonded IOBs than the other. As
expected, the number of used Slice Registers is higher
than the iterative loop case and this is a result of
pipeline characteristics of the FSMD architecture.

The FSMD structured subblock of key expansion
was described by an ASMD chart, which serves as a
basis for the VHDL program (Fig. 9).

Figure 9. Key expansion ASMD

The ASMD chart contains a minimum of 3 states,
as follows:

 IDLE is the initial state, when as the key
expansion was started by BEGIN_KEXP and
writing in RAM was activated by WE signal,
the ending of key expansion is deactivated
through END_KEXP, and the expansion
round counter is incremented by 1; activation
of BEGIN_KEXP means transition to the next
state, that is, EXPANSION, while deactivation
of BEGIN_KEXP means deactivation of both
writing in RAM and ending of key expansion
process.

 EXPANSION is meant for running the key
expansion process, when as long as the
counter register achieved a binary value of
"1010" (i.e. decimal value of 10), WE is kept
activated, END_KEXP is still deactivated, and
the next state is STOP; if the counter register
did not achieve "1010", it is incremented by 1.

 STOP is the final key expansion state, when
writing in RAM is activated by WE signal
and, also, the ending of key expansion is done
by the activation of END_KEXP signal.

As the number of states increases, then, the
number of used FPGA platform resources will
consequently increase. For this reason, by means of
number of states, several versions of FSMD
controllers, both for encryption/decryption and for key
expansion, were tested by the author in order to find
out this minimal solution.

The key expansion (i.e. FSMD controller)
subblock, defined itself as an instance of the
encryption/decryption main block, has 2 instantiated
subblocks, that is, the one round key expansion and
the RAM subblocks.

Concerning the implementations of encryption and
decryption, there is a difference between them, this
providing decryption with a better throughput
(Appendix A): besides the particular round constant
RCON [1], contained by the FSMD controller, there is
a reduced signal structure of the decryption one round
key expansion subblock, by comparison to the
encryption correspondent.

Each of the expanded round keys will be stored in
RAM and provided as needed to the appropriate round
by selecting it with a RAM ADDRESS signal which
has a binary value that is equal to the binary equivalent
of the round number.

The VHDL implementation solution for the RAM
subblock was mainly inspired by a standard solution
offered to users by Xilinx ISE programming platform
([3]), through “Synthesis Constructs” portfolio, and
then, adapted by the author according to [5], to the
encryption/decryption key expansion block.

The system had to be completed by adding 3 round
implementation blocks that, together with the key
expansion block, were previously defined as for data
processing: first round, one round, and last round
blocks (Appendix B). Similar to key expansion, all 3

Paul Burciu

6

blocks were integrated as VHDL instances of the
encryption/decryption controller block.

The first round block was defined as for the initial
encryption/decryption round, which only contains an
AddRoundKey transformation that was applied to the
plaintext/ciphertext message and to the initial key. The
VHDL architectural body of its implementation
consists of a single subblock instantiation statement,
meaning of the AddRoundKey transformation
(Appendix C). The output signal of the first round
block is provided to the FSMD encryption/decryption
controller block and connected to the input of the next
round block (Appendix C).

The one round block integrated all 4 round
transformations of AES-128 crypto-system as VHDL
instances, as previously mentioned on this chapter.
Also, it is integrated as an instance by the
encryption/decryption controller block which will
iterate it 9 times, that is, for 9 out of 10 AES-128
rounds (Appendix D). The VHDL architectural body
of its implementation consists of 4 subblock
instantiation statements, so that each instantiated
subblock’s output is connected to the input of the next
instantiated subblock, except of the output of the last
subblock which is provided to the FSMD
encryption/decryption controller block and connected
to the input of the next round block (Appendix D).
Each of the 4 transformations was implemented
according to [1] as a separate VHDL program.

The last round block integrated 3 out of 4 round
transformations of AES-128 crypto-system as VHDL
instances (i.e. except MixColumns). This block is then
integrated by the encryption/decryption controller
block (Appendix E). The VHDL architectural body of
its implementation consists of 3 subblock instantiation
statements, so that each instantiated subblock’s output
is connected to the input of the next instantiated
subblock, except of the output of the last subblock
which is provided to the FSMD encryption/decryption
controller block and connected to the output of the
crypto-system (Appendix E).

Another optimization brought by this
implementation, in terms of speed of operation, was
calling of an integer table constant (denoted as SBOX)
from the VHDL package instead of a long sequence of
CASE statements, when running a SubBytes
transformation of the one round key subblock. In order
to have a minimized VHDL package, so that to reduce
the consumed resources, it only integrated 2
substitution tables (provided by [1]), that is, for
SubBytes and InvSubBytes transformations, and 2
multiplication functions that were designated for
MixColumns and InvMixColumns transformations.

For comparison, Appendix G ([6]) gives, together
with author’s current implementations, examples of
recent AES FPGA implementations from literature,
mainly using low resources FPGA devices.

The functional verification of the implementation
was made by using the simulation process which was
facilitated by Xilinx ISE programming software
(Appendix F). This was done by running the specific
testbench, that is, the testing software module which

contains the hardware implementation to be tested (i.e.
the encryption and the decryption module).

Finally, the potential applications that might
integrate an FPGA cryptographic implementation (i.e.
distance learning, multiple digital TV, video streaming
or telemedicine) demand up to 24 Mbps of speed,
according to TABLE VI ([2]), but other recent
applications (i.e. Bluetooth 5.0 or 4K video streaming)
may need up to 25 Mbps, all these requirements being
satisfied by this implementation. In the meantime,
modern cloud computing may need a bandwidth of up
to 10Gbps, thus requiring from cryptographic
implementations a serious speed improvement.

TABLE VI. POTENTIAL CRYPTOGRAPHIC APPLICATIONS [2]

Application Upstream Downstream

Distance learning 384Kbps-l.5Mbps 384Kbps-l.5Mbps

Telecommuting 1.5Mbps-3.0Mbps 1.5Mbps-3Mbps

Multiple digital TV 6.0Mbps-24.0Mbps 64Kbps-640Kbps

Internet Access 400Kbps-1.4Mbps 128Kbps-640Kbps

Web hosting 400Kbps-1.5Mbps 400Kbps-1.5Mbps

Video conferencing 384Kbps-1.5Mbps 384Kbps-l.5Mbps

Video on demand 6.0Mbps-18Mbps 64Kbps-128Kbps

Interactive video 1.5Mbps-6.0Mbps 128Kbps-1.5Mbps

Telemedicine 6.0Mbps 384Kbps-1.5Mbps

High-definition TV 16Mbps 64Kbps

IV. CONCLUSIONS

This paper presented a modular hardware
implementation of AES crypto-system and studied
implications of different design solutions susceptible
to be used. This implementation provides the
developers with the possibility of upgrading modules
at both levels of modularity and of efficiently using
resources from a low equipped FPGA platform.
Additionally, it provides the option of storing keys in
RAM, causing a supplementary number of clock
cycles, but not significantly affecting the system
speed.

Future research will try to find any possible
solution for a pipelined implementation of the AES
algorithm on low resources FPGA platforms, with
simultaneous encryption/decryption and key
expansion, in order to achieve high
encryption/decryption speed, as demanded by current
communication applications.

REFERENCES

[1] FIPS, PUB 197, “Announcing the Advanced Encryption
Standard (AES)”, U.S.A., 2001.

[2] Francisco Rodriguez-Henriquez, N.A. Saqib, A. Diaz-Perez,
Cetin Kaya Koc, “Cryptographic Algorithms on
Reconfigurable Hardware”, Springer Science+Business
Media LLC, New York, U.S.A., 2006.

[3] Xilinx ISE 14.7 programming platform (shareware version)

[4] https://www.xilinx.com/support/documentation/data_sheets

[5] Pong P. Chu, “FPGA prototyping by VHDL examples”, John
Wiley & Sons, Inc., Hoboken, New Jersey, U.S.A., 2008.

[6] K. Rahimunnisa, P. Karthigaikumar, Soumiya Rasheed, J.
Jayakumar, S. SureshKumar, “FPGA implementation of AES
algorithm for high throughput using folded parallel
architecture”, Security And Communication Networks,
Security Comm. Networks, Wiley Online Library
(wileyonlinelibrary.com). 2012, DOI: 10.1002/sec.651

An Efficient (Low Resources) Modular Hardware Implementation of the AES Algorithm

7

APPENDIX A - IMPLEMENTATION PARAMETERS OF FSMD VS ITERARTIVE LOOP [3]

FSMD -

Encryption

FSMD -

Decryption

Iterative Loop -

Encryption

Iterative Loop -

Decryption

Throughput [Gbps] 0.911 0.952 2.023 1.885

Percentage of occupied area 9% 10% 6% 7%

Maximum Frequency [MHz] 167.193 148.687 173.882 161.979

Minimum period [ns] 5.981 6.726 5.751 6.174

Minimum input arrival time before

clock [ns]
5.699 6.059 5.048 4.452

Maximum output required time after

clock [ns]
7.146 7.180 4.162 3.634

Slice Logic Utilization

Number of Slice Registers
1,606/
5,4576

2%
1,607/
54,576

2%
793/

54,576
1%

789/
54,576

1%

Number of Slice LUTs
4,450/

27,288
16%

4,719/

27,288
17%

1,786/

27,288
6%

2,155/

27,288
7%

Number used as Logic
4,450/
27,288

16%
4,719/
27,288

17%
1,786/
27,288

6%
2,155/
27,288

7%

Slice Logic Distribution

Number of LUT Flip Flop pairs used 4,761 4,940 2,049 2,395

Number with an unused Flip Flop
3,155/

4,761
66%

3,333/

4,940
67%

1,256/

1,916
61%

1,606/

2,395
67%

Number with an unused LUT
311/

4,761
6%

221/

4,940
4%

263/

1,916
12%

240/

2,395
10%

Number of fully used LUT-FF pairs
1,295/
4,761

27%
1,386/
4,940

28%
530/
1,916

25%
549/
2,395

22%

Number of unique control sets 32 30 6 6

IO Utilization

Number of IOs 6 6 261 261

Number of bonded IOBs
6/

296
2%

6/
296

2%
261/
296

88%
261/
296

88%

Specific Feature Utilization

Number of Block RAM/FIFO
4/

116
3%

4/

116
3% - - - -

Number using Block RAM only 4 4 - - - -

Number of BUFG/BUFGCTRLs
1/

16
6%

1/

16
6%

1/

16
6%

1/

16
6%

APPENDIX B - ENCRYPTION BLOCK DIAGRAM (SIMILAR TO THE DECRYPTION VERSION) [3]

APPENDIX C - FIRST ROUND ENCRYPTION SUBBLOCK (SIMILAR TO THE DECRYPTION VERSION) [3]

Paul Burciu

8

APPENDIX D - ONE ROUND ENCRYPTION SUBBLOCK (SIMILAR TO THE DECRYPTION VERSION) [3]

APPENDIX E - LAST ROUND ENCRYPTION SUBBLOCK (SIMILAR TO THE DECRYPTION VERSION) [3]

APPENDIX F - THE ENCRYPTION SIMULATION (SIMILAR TO DECRYPTION) [3]

APPENDIX G - COMPARISON OF PROPOSED DESIGN WITH EXISTING ARCHITECTURES [6]

Author Architecture FPGA device
Throughput (Gb/s) Frequency

(MHz)
Slices/available

ENC ENC/DEC

This work
State machine-based

AES
Spartan-6 0.911 0.952 142.356 2090/27288

This work Sequential Spartan-6 2.023 1.885 173.882 1786/27288

K. Rahimunnisa et

al. [6]
Basic AES Virtex-6 XC6VLX75T 11 16 505.5 2053/93120

K. Rahimunnisa et
al. [6]

Folded structure Virtex-6 XC6VLX75T NA 25.32 505.5 1586/93120

K. Rahimunnisa et

al. [6]
Folded with parallel Virtex-6 XC6VLX75T 32 37.1 505.5 1664/93120

Granado-Criado et
al. [4]

Partial and dynamic
reconfiguration

XC2V6000-6 24.922 NA NA 3576/33792

Alaoui Ismaili et al.

[6]

Self-partial and dynamic

reconfiguration
Spartan II–XC2s200E 0.016 NA 28.7 196/2353

Rais et al. [22] Simple AES Virtex-5 XC5VLX50 4.34 NA 339.09 399/7200

Fan et al. [10] Fully pipelined XC2V3000-6 NA 28.4 222.2 139357/14334

Bulens et al. [23] LUT AES Virtex-5 NA 4.1 350 800/1100

An Efficient (Low Resources) Modular Hardware Implementation of the AES Algorithm

9

Virtex-4

2.9 250 700/1220

Spartan-3

1.7 150 1800/2150

Lemsitzer et al. [24] GCM AES Virtex-4 NA 17.9 140 18400/1220

Yoo et al. [11]
Interpipelining and

intrapipelining
XC2VP70-7 29.77 NA 125.3 200/5177

Good et al. [25] LUT-based AES Virtex-E XCV2000E-8 NA 23.65 184.8 16693/19200

Spartan-III XC3s2000-5 NA 25.10 196.1 17425/1280

Kotturi et al. [26] Parallel pipelined AES XC2VP70-7 29.77 NA 232.6 5408/5177

Aziz et al. [27] CCM
Spartan II-

XC3s200pq208-5
2.699 NA 231.97 481/120

Rouvroy et al. [7] AES for embedded Virtex-2 NA 0.358 123 146/256

Hodjat et al. [9] Fully pipelined XC2VP20-7 21.54 NA 157 5177/5177

Zhang et al. [12] Subpipelining XCV1000-8 21.57 NA 168.4 11022/1536

Zambreno et al. [28] AES Virtex-II XC2V4000 23.57 NA 184.1 16938/17021

Farhan et al. [29] Simple AES Xilinx x2v1000 1.45 NA 119 542/5120

Hodjat et al. [30] Fully pipelined XC2VP20-7 21.64 NA 169.1 9445/5177

Sever et al. [31] Sequential XC2V8000-5 NA 0.83 65 8378/46592

Wang et al. [32] Sequential XCV1000e-8 NA 0.463 75 5150/1536

Standaert et al. [8] Pipelined XCV3200e-8 18.5 NA 169 2257/8235

Chodowiec et al. [3] Folded Spartan II-XC2S30 NA 1.3 50 222/54

Jarvinen et al. [33] Fully pipelined Virtex-E XCV1000e-8 16.5 NA 129.2 11719/1536

Saggesse et al. [34]
Unrolling, tiling, and

pipelining
Virtex-E XCV2000e-8 20.3 NA 158 5810/19200

Vu et al. [35] CCM Spartan II-2s200pq208-5 NA NA 43.34 2035/120

Saqip et al. [36] Sequential XCV812 0.259 NA 22.41 2744/8544

Standaert et al. [37] Reconfigurable AES Virtex-5 NA 1.45 119 542/4800

Chittu et al. [14]
State machine-based

AES
Virtex-II XC2V1000-4 NA 0.739 75 4325/5120

Sklavos et al. [17] Sequential XCV300BG432 NA 0.259 22 2358/384

Chitu et al. [38] Sequential XC2V1000-1 NA 0.739 75 4325/5120

Helion [39] AES Virtex-5 NA 4.1 350 349/4800

Manavski [40] AES
NVIDIA

GeForce8800GTXGPU
8.28 NA NA NA

Harrison et al. [41] AES
NVIDIA

GeForce7900GTGPU
0.87 NA NA NA

Wollinger et al. [42] AES TMS320C6x DSP 0.14 NA NA NA

Paul Burciu

10

