
Journal of Electrical Engineering, Electronics, Control and Computer Science –

JEEECCS, Volume 5, Issue 18, pages 1-6, 2019

Interpreting a basic turtle graphics

programming language: hand-coded vs

JavaCC based implementations

Florin-Marian Birleanu
Department of Electronics, Computers and Electrical Engineering

Faculty of Electronics, Telecommunications and Computer Science
University of Pitesti, Romania

florin.birleanu@upit.ro

Abstract – Interpretation of custom programming

languages is a challenging task for many software

programmers. This paper presents an easy to follow

approach to this problem by using as input language a

small programming language for generating turtle

graphics. First, we present a step by step almost

automatic manual implementation in JavaScript of an

interpreter for this input language. Then, we automate

the implementation even more, by using the JavaCC

code generator. In this second implementation, instead

of directly interpreting the abstract syntax tree in order

to generate a drawing in a Canvas element, we translate

it to an SVG graphics file. Besides their usefulness as

case studies, the resulting applications can be used as

tools for teaching basic programming concepts.

Keywords – formal languages; regular expressions;

grammars; scanning; parsing; parser generators;

interpretation; translation; turtle graphics

I. INTRODUCTION

Programming language interpretation and
translation are a form of metaprogramming, which is
why they scare many programmers. Even those that
are familiar with regular expressions and use them on
a daily basis may find it difficult to parse JSON or
HTML data, for instance. Fortunately, there are
libraries for performing these particular tasks.
However, if one wants a different functionality or a
faster implementation, the solution is to learn the
details of parsing [1, 2]. This is surprisingly easy to
implement in a mostly automatic manner, as we show
in this paper, for a certain class of input languages. We
illustrate this for the case of a simple input language
that allows its user to easily program a virtual turtle to
draw line-based drawings [3, 4, 5].

The input language used here is described in
Section 2 and the generic approachh to language
interpretation and translation is shown in Section 3. In
Section 4 we present our JavaScript based
implementation of a web interpreter that shows the
output of the turtle program in an HTML5 Canvas
element. Another implementation of the same input
language is presented in Section 5. This second
implementation uses the Java programming language
and is even more automatic than the previous one, as it

is based on a software tool (i.e., JavaCC) that
generates a large part of the source code for the
interpreter. In this case the output of the turtle program
is an SVG graphics file (that can be visualized in a
web browser, as well).

II. THE TURTLE GRAPHICS LANGUAGE

The language that we used as input language for
our interpreter is inspired by the LOGO pogramming
language [6] and consists in a small set of instructions
that command the movement of a virtual turtle that is
able to move and draw lines on a virtual paper. The
instructions are very simple and require each only one
parameter, as they rely on a relative coordinate system.
More precisely, the turtle is able only to go forward a
certain number of steps, or to turn right or left a certain
number of degrees. Two similar instructions are
available for moving the turtle forward (relative to its
current position and orientation): the “go” instruction
(that moves the turtle by leaving a trail between its
current position and its new position) and the “jump”
instruction (that moves the turtle without leaving any
trail on the paper). In order to make the language a
little more interesting, we also introduced an
instruction that allows the repetition of an instruction
block for a certain number of times.

Expressed formally as a context-free grammar in
EBNF notation [7], our turtle graphics language looks
like in Table I. The regular expressions for the lexical
atoms of the language are shown in Table II.

TABLE I. THE GRAMMAR OF OUR TURTLE LANGUAGE

Variable Body of production

Program → (Instruction)*

Instruction → Go | Jump | TurnLeft | TurnRight | Repeat

Go → <GO> <PO> <NUM> <PC>

Jump → <JMP> <PO> <NUM> <PC>

TurnLeft → <LFT> <PO> <NUM> <PC>

TurnRight → <RGT> <PO> <NUM> <PC>

Repeat → <REP> <PO> <NUM> <PC>
<BO> (Instruction)* <BC>

Florin-Marian Birleanu

2

TABLE II. THE REGEXES FOR THE LANGUAGE TOKENS

Token name Regular expression

<GO> : go | GO

<JMP> : jump | JUMP

<LFT> : left | LEFT

<RGT> : right | RIGHT

<REP> : repeat | REPEAT

<PO> : (

<PC> :)

<NUM> : [0 - 9]+

<BO> : {

<BC> : }

That means that a simple program for drawing an
equilateral triangle pointing up (North) would look
like in Fig. 1.

Figure 1. A simple program for drawing a triangle using our turtle

graphics programming language.

III. LANGUAGE INTERPRETATION AND

TRANSLATION

A program like the one in Fig. 1 is just a string of
characters that needs to be understood as a program in
our turtle graphics language. Whether one wants to do
interpretation or translation, the three steps required
are similar – see Fig. 2.

Figure 2. The generic approach to language interpetation or

translation of a (programming) language.

In the lexical analysis (or scanning) step, the
symbols (characters) in the input program are grouped
into lexemes, that correspond each to a token type. For
instance, the lexeme ”(” corresponds to the token type
<PO>, while the token type <GO> can be associated
to different lexemes, i.e., ”go” and ”GO”.

We choose to call token an object containing two
fields: a token type (such as <GO>, <NUM>, <BO>)
and a token value (a lexeme such as ”go”, ”100”, ”{”).
Hence, the output of the lexical analysis step is a list of
token objects. In order to make things more clear, Fig.
3 shows the list of tokens obtained after performing
lexical analysis on the program in Fig. 1. (The token
types from Table II were searched for, while the
blanks, tabs and newline markers were ignored.)

Figure 3. The list of tokens resulted by scanning the program in

Fig. 1.

While scanning (or lexical analysis) groups letters
into words, parsing (or syntax analysis) groups words
into phrases. The output of the parser is an abstract
syntax tree (AST), which is a hierarchical
representation of the tokens. For the list of tokens in
Fig. 3, the AST might look like in Fig. 4.

Figure 4. The AST for the list of tokens in Fig. 3.

 Interpreting a basic turtle graphics programming language: hand-coded vs JavaCC

3

As it can be noticed, some of the tokens were
redundant (such as <PO> and <PC>) and can be
ignored when constructing the tree.

This tree representation of the program is far more
manageable from a programming perspective than the
string of characters from Fig. 1. One can easily see
from it that the program consists in three instructions
and that the third instruction is a repeat instruction for
a block composed of two instructions. By traversing
this tree in depth from left to right, each instruction
can be directly interpreted or translated to a different
language or representation.

IV. THE HAND CODED JAVASCRIPT BASED

INTERPRETER

We present in this section the steps required in
order to implement a web browser based
implementation of an interpreter for programs written
in our turtle graphics language.

As shown before, we need to perform three steps:
scanning, parsing, and tree traversing. For
implementing the scanning step we start from the
regular expressions (from Table II) for the different
token types that can appear in our language. Starting
from these regexes we construct a finite automaton
based on which we construct our scanner – see Fig. 5.

Figure 5. The finite automaton for our scanner.

For implementing the parser we use the fact that
our grammar (see Table I) is an LL(1) grammar [1, 2],
which means that its productions lack left recursion
and, hence, can be easily implemented by turning each
variable (from the head of the productions) into a
function whose body is constructed based on the body
of the production as follows:

- a variable turns into the call of the function that
corresponds to that variable

- a token type turns into the call of a function that
verifies that the current token from the parser input
corresponds to that token type.

Whenever there are more than one production
bodies to choose from, we can make a decision based
on the current token type from the input of the parser.
(This is guaranteed by the ”1” in LL(1), which is a
subclass of context-free grammars that can be hand-
coded by using the method presented here.)

For instance, three of the functions of our parser
might look like in Fig. 6.

Figure 6. The first version (that only performs syntax check) of

the JavaScript based parser.

However, this version of the parser is only able to
check whether the list of tokens produced by the
scanner represents a syntactically correct program.
(One can do that check by simply calling the function
Program(). If no syntax error message appears, the
program passed the syntax check.)

A true parser would generate an AST (whose root
would be returned by a call to Program()). This can be
done by performing some modifications on the code in
Fig. 6. See Fig. 7 for the result.

Florin-Marian Birleanu

4

Figure 7. The second version (that generates an abstract-syntax

tree) of the JavaScript based parser.

In order to interpret the resulting tree, we must first
decide how to model internally the position and
orientation of the turtle. As it can only move forward
and rotate, it is enough to store the current position (tx,
ty) of the turtle on the page and its orientation (ta) in
degrees measured anticlockwise starting from the x
axis.

With these in mind, the interpretation of the tree
might look like in Fig. 8.

Figure 8. The interpretation of the abstract-syntax tree.

An example of running the interpreter is shown in
Fig. 9.

Figure 9. The result of running our JavaScript based interpreter

for a test program.

V. THE JAVACC BASED TRANSLATOR

JavaCC (Java Compiler Compiler) is a software
tool that generates Java source code for the scanning
and parsing stages of the interpreter based on the
regular expressions for the tokens and on the EBNF
grammar of the source language [7]. The regexes and
the grammar are specified using specific constructs in
an input file (having the ”.jj” extension). This file can
also contain the Java code that instantiates and runs
the parser and then traverses the AST and interprets it.

Actually, in this version of our application instead
of interpreting the AST and showing the generated
turtle drawing in a graphical user interface, we
translate the AST to an SVG file (that can
subsequently be viewed in a web browser).

The JavaCC specifications file starts with the
definition of the main class of the translator, placed
between PARSER_BEGIN(…) and
PARSER_END(…). This class only contains the
method main, in which the parser (i.e., the class itself)
is instantiated (with System.in as its argument, which
means that the input program will be read from
standard input in the console) and the generated tree is
translated (with the SVG output being written to
standard output in the console). In the PARSER...
section of the JavaCC specifications file we also put
the definition for the Node class, based on which the
AST nodes are created. Outside of this section in the
”.jj” file we put the regular expressions, followed by
the grammar.

The scanner is described with the aid of the SKIP
and TOKEN keywords. For instance, SKIP: {” ”|”\t”}
tells the scanner to ignore blanks and tabs in the input.
And TOKEN: {<NUM: ([”0”-”9”])+>} describes a
token called NUM whose regex is [0-9]+.

The grammar of the parser must be LL(k) and is
described with an EBNF-like notation that looks like
this Program():{}{(Instruction)*} for the production
Program → (Instruction)*. Of course, in order to
construct the AST some things must be added, which
complicate this structure. The main parts of the
JavaCC specifications file are shown in Fig. 10.

 Interpreting a basic turtle graphics programming language: hand-coded vs JavaCC

5

Figure 10. The JavaCC specifications for the turtle language

program to SVG image translator.
The SVG content is output to the standard output in
the console, but can be easily redirected to an ”.svg”
file. It only contains <line> elements, corresponding to
the GO commands in the input program. The
translation from the AST to the SVG text content is
almost identical to the interpretation discussed in the
previous section, except that instead of drawing lines
in the canvas, we add ”<line …>” to the SVG output
string.

The ”.jj” specifications file is translated by JavaCC
(using the ”javacc” command in the console) to
multiple ”.java” files that are then compiled by ”javac”
to ”.class” files. The main class can then be run (with
”java”) in order to accept input code in our turtle
language and generate the corresponding SVG image.
Fig. 11 shows an example of use.

Figure 11. Compilation and use of the JavaCC based turtle language to SVG translator.

Florin-Marian Birleanu

6

ACKNOWLEDGEMENT

The author would like to thank his former students
Ionela-Florina Rosu and Gabriel-Valentin Gheorghe
for their support in the implementation and testing
stages of the software applications presented in this
paper.

CONCLUSION

Programming language source code interpretation
(or translation to another language) is a challenging
string processing task. However, this task is
manageable if one follows certain well-defined steps.
This paper discussed these steps and illustrated them
for the case of a didactic language that can be useful
for teaching programming basics. First, a manual
implementation of an interpreter for this toy
programming language was shown, in order to clearly
explain the steps required. Then, the implementation
of the first two (out of the three) steps was automated
with the aid of a source code generator. The resulting
applications can be easily modified in order to extend
the capabilities of the input language.

REFERENCES

[1] T. Æ. Mogensen, Introduction to Compiler Design, 2nd ed.,
Springer International Publishing, 2017.

[2] D. Grune and C. J.H. Jacobs, Parsing Techniques. A Practical
Guide, 3rd ed., Springer-Verlag New York, 2008.

[3] C. J. Solomon and S. Papert, “A case study of a young child
doing turtle graphics in LOGO,” in Proceedings of the AFIPS
„76 national computer conference and exposition, New York,
June 7-10, 1976, pp. 1049–1056.

[4] M. E. Caspersen and H. B. Christensen, “Here, there and
everywhere - on the recurring use of turtle graphics in CS1,”
in Proceedings of the ACSE „00 Australasian conference on
Computing education, Melbourne, 2000, pp. 34–40.

[5] R. Goldman, S. Schaefer, and T. Ju, “Turtle geometry in
computer graphics and computer-aided design,” Elsevier
Computer-Aided Design, vol. 36, pp. 1471–1482, December
2004.

[6] W. Feurzeig and G. Lukas, “LOGO – A Programming
Language for Teaching Mathematics,” Educational
Technology, vol. 12, no. 3, pp. 39–46, March 1972.

[7] V. Kodaganallur, “Incorporating language processing into
Java applications: a JavaCC tutorial,” IEEE Software, vol. 21,
pp. 70–77, July-Aug. 2004.

