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Abstract – This paper presents a decoupled feedback 

control architecture, for input-delay robotic 

servomechanisms. As a decoupling principle, any 

servomechanism is modeled by a local input-delay 

dynamic model. However, the coupling effect from the 

motion of other servomechanisms, locally acts as an 

unknown and bounded disturbance to be rejected by a 

robust digital PIDF (proportional derivative, integral 

with filer) controller. As a beneficial implication, the 

proposed digital feedback control architecture, is 

designed and simulated according to methodologies and 

tools available in the literature for siso (single-input 

single-output) input-delay control servo-systems. 

Simulation results obtained from prototyping 

servomechanisms are presented and discussed. These 

results show the high precision and robustness, of the 

proposed decoupling digital feedback control 

architecture. In future research works, the software 

code of digital PIDF controllers, will be implemented 

and uploaded into a DSP (digital signal processing) 

target, e.g., FPGA chip, for digital control of real input-

delay robotic servomechanisms.  

Keywords-servomechanisms; decoupled feedback 

control; bounded disturbance; digital PIDF controller; 

precision and robustness. 

I. INTRODUCTION 

 The servomechanisms are encountered in a wide 

variety of application areas, including vehicles, 

machine tools, motorized conveyors, automated 

manufacturing, motorized water pumps, maritime and 

space navigation engines, both agriculture and home 

automation, and specially fixed and mobile robotics.  

   In the case of robotic servomechanisms, their 

increasing popularity is mainly due to low cost, ease 

of maintenance, interfacing flexibility with DC 

energy sources (e.g., battery, photovoltaic panel or 

both), fidelity, better production efficiency, while 

simultaneously maintain high precision, and a great 

operational robustness.  

   In addition, compared to human operators, the 

robotic servomechanisms can rapidly perform tedious 

tasks, involving artificial intelligence capabilities. 

However, they are intrinsically nonlinear, and 

structurally multivariable dynamic systems. As an 

implication, the complex nature of robotic systems 

has been and remains a mayor difficulty for the 

development of both low cost and reliable feedback 

control policies.  

 Furthermore, beside the general intricate nonlinear 

nature of robotic systems, there is a relevant subclass 

involving input delay phenomena. This additional 

problem is very hard to be overcome during the 

synthesis associated feedback control schemes. These 

potential combined difficulties have led, to an 

increasing search of more suitable kinematic and 

dynamic models, as well as robust local feedback 

controllers with lower complexity level [1-2].  

   Of course, since robotic servo mechanisms are 

kinetically and dynamically coupled. i.e., the motion 

of each of them, results from an algebraic some of its 

servo-actuator force (or torque), and the resistive 

forces (or torques) including those arising from the 
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motion of other servomechanisms. As an implication, 

independently of the modeling tools (e.g. Euler-

equations and Lagrange laws), a rigorous dynamic 

model of a robot, consists of a set of coupled 

kinematic and dynamic nonlinear equations [3-5]. 

Therefore, the design of feedback control schemes 

from such complex and intricate dynamic models, has 

been and remains an active research area for both 

fixed and mobile robotics [6-10]. 

The main feedback control schemes encountered 

frequently in robotic control systems, can be 

classified into three relevant categories as follows:  

a) Multivariable nonlinear control scheme: It is 

based on exact linearizing and decoupling 

feedback, of the coupled dynamic state 

model. The related motion equations built in 

the state space, are linearized and decoupled 

by appropriate nonlinear feedback. This 

architectural approach leads to a precise open 

loop model. However, it involves complex 

equations, requiring enormous computing 

power. Therefore, are difficult to materialize 

in most practical contexts. It also requires 

powerful digital computing resources for the 

implementation of the resulting controllers 

[11-12]. 

b) Multivariable input-output nonlinear control 

scheme: It is based on exact transform of the 

coupled nonlinear dynamic model, into m 

equivalent decoupled siso canonical models 

(one for each degree of freedom). This 

requires enormous computing resources due 

to Lie Brackets calculus [13]. 

c) Decoupling linear control scheme: based on 

an approximate decomposition into decoupled 

dynamic servo-systems. In which case the 

coupling effect due to the motion of other 

servomechanisms, is treated as disturbance. 

This is easy to design, however, might 

become utopic and unrealistic if servo-

actuators involve some intrinsic and intricate 

behaviors, e.g., dead zone, input delay, etc. 

This approach leads to simplified models, 

therefore, practical for the implementation of 

the feedback controller. Here, one no longer 

needs to apply the complex nonlinear control 

scheme. Then, the intricate computation of 

the robot's reverse dynamics is avoided. 

Although advantageous by its simplified 

nature, it might create a significant behavior 

gap, compared to the physical reality of a 

whole robotic servomechanism. In which 

case, a simple feedback with low cost 

implementation, is unable to stabilize, neither 

a local servo-system nor a whole robotic 

servomechanism.  

 
Following the previous literature review, the aim 

of this paper is to design and simulate a decoupled and 
piecewise linear digital feedback control scheme, for 
input-delay robotic servomechanisms. In each 
decoupled input-delay servomechanism, the coupling 

effect from the motion of other, is treated as an 
unknown disturbance with bounded magnitude. 
Moreover, a simple digital PIDF controller per each 
locally decoupled servomechanism, is synthetized and 
used in order to meet our twin objectives, of tracking 
any reference output and rejecting any unknown 
disturbance with bounded magnitude. The advantages 
of the new control architecture are as follows: 

a) The feedback control problem can be 

systematically solved, according to design 

methods and tools of robust controllers, for 

siso (single input and single output) input-

delay servo-systems [14-15].  

b) The robotic servomechanism is decomposed 

into M decoupled siso dynamic servo 

systems, in which M servo actuators now 

have intrinsic realistic behaviors, such as dead 

zone and input delay. To this, is added the 

coupling effect of the motion of other servo 

systems. This keeps the whole robotic 

servomechanism model, fairly closed to that 

of the physical reality. 
c) The PIDF controller to be used for each 

decoupled servo-system, is structurally simple, 
and can be easily embedded on DSP chips. 

d) Compared to a standard PID controller, the 
proposed PIDF feedback control policy, is 
highly robust for both disturbances tracking 
and uncertainties rejection.  

The next sections of this paper are organized as 
follows: In section II, are presented the methodology 
and tools used to design and simulate the proposed 
PIDF-based feedback control architecture, for input-
delay robotic servomechanisms. In Section III, the 
simulation results obtained from prototyping servo-
systems are presented and discussed. Finally, the 
conclusion of the paper is provided in section IV. 

II. METHODOLOGY AND TOOLS  

A. Decoupled Dynamic Model of Input-Delay 

Robotic Servomechanisms 

The decoupled dynamic model of input-delay robotic 

servomechanisms, is presented in Figure 1. The 

subscript j = {1, 2,…, M} is an index variable of an 

any servomechanism. 
 

Figure 1. Decoupled dynamic model of input-delay robotic 
servomechanisms. 
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Figure 2. Decoupled model of the feedback control scheme of input-
delay servomechanism 

 

 
 

The symbols used in figures 1 and 2, are: 
▪ λj: time delay; 
▪ Kj: static gain; 
▪ Τj: time constant; 
▪ Uj, Yj: control input and output 

respectively; 
▪ ωj : speed variable 
▪ ϴj : position variable  
▪ Wj : coupling disturbance(torque or force) 

▪ Ej = Uj+PjWj : tracking error 

▪ Pj: transfer function on the disturbance 
▪ Gcj(s): Open loop transfer function of the 

decoupled dynamic model 
A complete list of symbols is provided in the 

nomenclature, before reference section of this paper. 
Given these parameters, the open loop transfer 
function of the decoupled dynamic model presented in 
figure 1, is given by: 
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The unknown parameters in equation (1), can be 
experimentally determined, using Strejc identification 
technique [16], for an input-delay servomechanism, 
under step response with speed as output. 

B. Decoupled Analog Feedback Control Scheme of 

Input-Delay Robotic Servomechanisms  

   The decoupled analog feedback control scheme, of 
the robot with M input-delay servomechanisms, is 
shown in figure 2, where the transfer function of the 
PIDF controller is given by (2).  

The transfer function of the PIDF controller 
observed in figure 2, is given by: 

 E (s)  s  1+T  s

( )   s
( )  

  s
1

        
 1+T  s

1

j dj

j pj

j fj

KU s Kij
Dc s K

T
dj

K pj T sij fj

= = +

 
 = + +
 
 

+

   (2) 

where,  
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and Kpj, Tij and Tdj being, of course, being proportional 
gain, integral time constant, and derivative time 
constant respectively. 
 

Figure 3. Equivalent digital feedback control scheme 

 

 
 

   Figure 3 is, of course, an equivalent discrete 
representation of the same feedback control scheme. 
According to the control engineering practice, if Gjc(s) 
and Djc(s) are known, then the analog feedback control 
system shown in figure 2, could be preliminary 
designed, and simulated in the analog domain, in order 
to appreciate the predicted qualities of the closed loop 
servo-systems. Assuming that, these predicted 
qualities obtained in the analog domain are 
satisfactory, then, the next step is to compute the 
discrete transfer functions Gj(z) and Dj(z) from Gcj(s) 
in equation (1) and Dcj(s) in equation (2), respectively.  
 

C. Synthesis of Decoupled Discrete Feedback 

Control Scheme  

The transfer discrete function, Gj(z)observed in 
figure 3,is usually computed from Gjc(s) using the 
modified m-order z-transform technique. Therefore, 
Gj(z) is given by [14-15]: 
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(4) [5.28] 

On the other hand, Dj(z), computed from Dcj(s) using 
Tustin discretization method, is also given by [19]: 
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The resulting discrete transfer function of the 

PIDF controller, is calculated under a sampling 

period T with parameters b0j, b1j, b2j, a1j and a2j, given 

by equation (6). 
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(6)  

 
In equations (4) and (5), however, the sampling 

Frequency T used for the discretization, should be 
chosen according to Nyquist sampling theorem [17]. 

D. Dynamic modelling and simulation tool  

 
The simulation of the analog feedback control 

scheme given (1) and (2-3), and its equivalent discrete 
version given in (4) and (5-6), requires an advanced 
software tool, for the experimental modeling of open 
loop transfer function for input-delay dynamic models, 
and for conducting reliable simulations of siso input-
delay control system.  
   In this paper, we resort to our proprietary virtual 
instrumentation and automation software, 
“GuiMexServoSys” developed in previous works 
conducted in our research laboratory, and published 
with more deep details, in many references [18-19].It 
is a high level visual 32/64 Windows application, built 
form a mix of Matlab/GUI and Matalb/MEX-C++ 
technologies. Moreover, it is equipped with ready-to-
use resources for rapid simulation and monitoring of 
analog and digital input-delay systems, from transfer 
functions or state space dynamic models, as it will be 
seen in the next section. 

III. RESULTS AND DISCUSSIONS 

A. Parameters of Prototyping Servomechanisms 

For prototyping systems, it is assumed, without 
loss of generality, that the servomechanisms have the 
same following parameters: 

▪ λ = λ1 = λ2 = . . ., λj, …, λn: time delay; 
▪ K = K1 = K2 = . . ., Kj, …, Kn: static gain; 
▪ τ = τ1 = τ2, . . ., τj, …, τn : time constant; 
▪ P = P1, p2, …, Pj, …, Pn: for disturbances 

Given these notations, the experimental step 
response of a prototyping servo-mechanism, has been 
conducted, using the speed ω(t) as output, followed by 
the determination of unknown parameters λ; K and τ 
from Strejc identification method.  

   Other relevant parameters values retained for the 
simulations are: 

▪ λ = 0.35 s (time delay; 
▪ K = 1.18 (static gain); 
▪ τ = 0.93 s (time constant); 
▪ T = 31 ms (sampling period); 
▪ m= 8 (order of the modified z-transform) 

in (4); 
▪ N = 380 (default number of sample); 
▪ W = 0 (default value of disturbance 

magnitude); 
▪ ϴ0 = 3 rad (offset for a sine desired 

position). 

B. Useful Transfer Functions 

The related relevant transfer function, with known 
parameters, to be used for simulation purpose are 
given by (7-11) 
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As shown in figure 4, Equation (7), results from 
the dynamic model identification process from a 
sample of the experimental step responde, with speed 
ω as output. Therefore, the dynamic model of a 
prototyping input-delay servomechanism is realistic 
and reliable. On the other hand, the parameters of PID 
terms in equation (9) have been identified, given the 
knowledge of (8), by Ziegler and Nichols methods for 
servosystems [14-15]. The parameter Tf = 0.38 s (in 
the Filtering term in (9)), is choosen in simulating 
time, for the sake of realizability and improvement of 
PID weaknesses. 

C. Relevant Results and Discussions 

Figure 5 shows the simulated graphs of the open 
loop behavior using “GuiMexSysServo” tool. In figure 
5a, the speed is an output according to equation (7), 
and the position ϴ is the output in figure 5b. In both 
cases: 

• the coupling effect or disturbance, is Wj = 0 

• the step control voltage is U = 1.2 V.  

• the continuous and discrete step responses are 
piecewise identical.  

Figure 6 shows the screen view of 
“GuiMexServoSys” tool, used to produce simulation 
results. The group of clickable or modifiable visual  
input objects, which are delimited by blue piece wise 
rectangular shapes, offer to the user high level tools, 
for simultaneously design and fast simulation, of 
analog and discrete controllers, of siso input-delay 
servo-systems, operating under the effect of a 
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disturbance to be rejected by a robust PIDF feedback 
controller. 

 
Figure 4. Experimental step response (with speed as output) and 

dynamic model identification from Strejc method 
 

 
 

 
 

Figure 5. Graphs of an open loop input-delay servomechanism 

 

 
Figure 6. Step response simulation of PIDF-based feedback control servomechanisms 

 

 
 

Figure 7. Simulation of precision and robustness of the PIDF-based control servo-system (step response) 
 

  
 

Figure 6 shows the following conditions: 

• No coupling effects (W = 0.0);  

• The step control voltage is U = 1.2 V; 

• The index responses of the analog and 

discrete models are identical.  
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• In the absence of coupling effects, the robust 

PIDF feedback corrector is stable and follows 

the output reference. 
In Figure 7, when the coupling effects intensify 

(W> 3% of the desired reference), the PIDF feedback 
controller loses robustness, and the dynamic input 
delay servo-system tends to move away from the 
desired output position. However, with a bounded 
amplitude of coupling effects (W<= 3% of the desired 
reference), the proposed PIDF controller remains very 

reliable for its expected performance criteria, i.e., 
stability, fast response, zero static error, and 
robustness.  

It is worth noting here that, in automatic control 
practice, a feedback controller with unbounded 
robustness margin is an utopic whish. What is 
important, however for the designer, is to be able to 
outline its robustness bounds for appropriate use. 

 

 

Figure 8. Simulation of precision and robustness of the PIDF-based control servo-system (sine response) 
 

 
 

 
   In figure 8, the amplitude of the coupling effects is 
always at the limit value (W = 3% of the desired 
reference), and a sinusoidal waveform of adjustable 
frequency and amplitude, given by equation (12), is 
now applied as control signal on the testing platform. 
 

        ϴ(t) = ϴ0 + ϴm sin(2 πfpos t)                (12)  

The results obtained when testing the precision and 
robustness of PIDF-based control servo-systems, are 
visualized in figure 8, where ϴ0 = 3 rad is a default 
offset term, ϴm being the magnitude to be adjusted 
from the scrolling bar Pos (position).  

   A relevant finding arising from figure 7 and figure 8, 
is that, under any disturbance W(t) with magnitude less 
than 3% of the desired reference, the proposed PIDF 
feedback control system for an input-delay robotic 
servomechanism, reaches the reference sine input at 
less than four seconds. In addition, during the whole 
steady operating regime, even permanent disturbances, 
it continuously offers very good precision and 
robustness qualities. It is possible to improve these 
qualities in the future version of “GuiServoSys” tool, 
equipped with embedded design strategies of optimal 
PIDF controllers. 

CONCLUSION 

This paper has presented original strategy and tools, 
for rapid modeling and simulation, of digital feedback 

control of coupled input-delay servo-mechanisms. The 
simulation results emerging from prototyping coupled 
and uncertain servomechanisms, under digital PID 
controller, are very satisfactory. The error tracking and 
disturbance rejections levels, arising from simulation 
results, are reliable indicators of high precision and 
robustness, of the proposed digital PIDF-based 
feedback controller for input-delay robotic servo-
mechanisms. In future research works, it will be 
fruitful to resort to optimal versions of digital PIDF 
controllers. Finally, the real time programming and 
embedding of the digital PIDF controller into a target 
DSP chip, e.g. FPGA or SOC, will be very helpful, for 
real time testing the proposed decoupled PIDF-based 
feedback control architecture, on a real robotic system. 
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Nomenclature 

PIDF Proportional, derivative, integral 

with filter 

SISO Single-input single-output 

DSP Digital signal processing 

FPGA Field Programmable Gate Array 

e.g For example 

DC Direct Current 

i.e That is to say 

MIMO Multiple-Input Multiple-Output 

GUIMEX 

Servosyst 

GUIde Matlab EXecutable Servo-

systèm 

Matlab GUI Matlab GUIde 

SOC System On Chip 

j  Index variable 
λj Time delay 
Kj Static gain 
τj Time constant 
Uj, Yj Control input and output 

respectively 
ωj  speed variable 
ϴj Position variable 

ϴ0 Default offset term for a sine 

desired position 

ϴm Magnitude of a sine desired 

position can be adjusted  

Wj Coupling disturbance (torque or 

force) 

Ej Tracking error 

Pj Transfer function on the 

disturbance 

m Order of the modified z-

transform 

N  Default number of samples 

Gωcj(s) Transfer function of the open 

loop decoupled dynamic model, 

with ω as output 

Gcj(s) Transfer function of the open 

loop decoupled dynamic model, 

with ϴj as output 

Dcj(s) Transfer function of the PIDF 

controller 

Kpj Proportional gain 

Kij Integral gain 

Kdj Derivative gain 

Tij Integral time constant 

Tdj Derivative time constant 

Tfj Filtered derivative time constant  

Gj(z)  Discrete transfer function of the 

decoupled dynamic model 

Dj(z) Discrete transfer function of the 

PIDF controller 

b0j, b1j , b2j , a0j 

and a1j 

Variables resulting discrete 

transfer function of the PIDF 

controller calculated from Tustin 

method with a sampling period T 
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