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Abstract – Quadrotor have been an increasingly popular 

research topic in recent year due to their low cost, 

maneuverability, simplicity of structure, ability to hover, 

their vertical take-off and landing (VTOL) capacity and 

ability to perform variety of tasks. Besides, it is a great 

platform for control systems research, which is highly 

nonlinear and under-actuated system. The main target of 

this paper is to model the quadrotor nonlinear dynamics 

using Lagrange formalism and design controller for 

attitude (pitch & roll), heading & altitude regulation of 

quadrotor. The mathematical modelling includes 

aerodynamic effects and gyroscopic moments. One Non-

linear Control strategies, Higher-Order Sliding Mode 

Control (HOSMC) based on super-twisting algorithm has 

been proposed.  Higher-Order Sliding Mode Controller 

is designed for regulation or stabilization on the four 

controlled variables. The Controller has been 

implemented on the quadrotor physical model using 

Matlab/Simulink software. Finally, the performance of 

the proposed controller demonstrated in simulation 

study. 

Keywords-HOSMC; Lagrange; Mathematical 

Modelling; Quadrotor; MATLAB/Simulink 

I.  INTRODUCTION 

An Unmanned Aerial Vehicle (UAV) refers to a 
flying machine without an on-board human pilot [1], 
[2]. These vehicles are being increasingly used in many 
civil domains, especially for surveillance, 
environmental researches, security, rescue and traffic 
monitoring. 

Under the category of rotorcraft UAVs, Quadrotor 
have acquired much attention among researcher. 
Quadrotor is a multi-copter that lifted and propelled by 
four rotors, each mounted in one end of a cross-like 
structure. Each rotor consists of a propeller fitted to a 
separately powered Brushless DC motor. Quadcopter 
has 6 degrees of freedom (three translational and three 
rotational) and only four actuators [3]. Hence, 
quadcopter is an under actuated, highly nonlinear and 
coupled system. 

Several linear control approaches, such as PID, 
Linear Quadratic Regulator (LQR) and Linear 
Quadratic Gaussian (LQG), have been proposed in the 
literature and applied for attitude stabilization and/or 
altitude tracking of Quadrotors [13,14]. However, these 
methods can impose limitations on application of 

Quadrotors for extended flight regions, i.e. aggressive 
maneuvers, where the system is no longer linear.  

Moreover, the stability of the closed-loop system 
can only be achieved for small regions around the 
equilibrium point, which are extremely hard to 
compute. In addition, the performances of these control 
laws on attitude stabilization are not satisfactory 
enough comparing with other more advanced methods. 

To overcome this problem, nonlinear control 
alternatives, such as the feedback linearization [20], 
SMC [15,16,17] and Back stepping [18] approaches are 
recently used in the VTOL aircrafts control framework. 

An integral predictive nonlinear H∞ strategy has been 

also proposed and applied by G.V. Raffo et al. in [19]. 

In summary, the literatures in quadrotor control 
ignores aerodynamic effect, air disturbance and 
gyroscopic moment in dynamic modelling of quadrotor. 
In case of sliding mode control, the literatures do not 
consider reduction of chattering effect.  

This paper address all of the above problems. The 
paper organized in five sections. In section 1, it 
introduces about quadrotor UAV. In section 2, it 
models the physical system by considering 
aerodynamic and gyroscopic effect. In section 3, it 
designs a second order SMC based on super-twisting 
algorithm. In section 4, it presents the simulation result 
obtained from control implementation of physical 
system in Simulink environment. Finally, in section 5, 
it presents control effort and then concluding about the 
work. 

II. MATHEMATICAL MODELLING 

In this section, a complete dynamical model of 
Quadrotor UAV is established using the Lagrange 
formalism. 

A. Reference Frames 

A reference frame is a set of points in space for 
which the distance between any two points is fixed at 
all times [5]. Two-coordinate system is required for 
quadrotor physical system description; the body frame 
attached to the quadrotor body at its center of gravity 
and the inertial frame fixed to the ground. 



Mebaye Mamo 

 

10 

B. Rotational Matrix 

The location of a rigid body in space can be 
expressed by the position and orientation of a reference 
frame attached to the rigid body with respect to the 
inertial frame. The orientation of quadrotor is 
represented by Euler angles (pitch, roll and yaw). To 
transform the body-fixed frame into the inertial frame; 
the z-y-x rotational matrix is considered [5].  

The transformation is derived by rotating the body 
frame around the z-axis of the earth frame by the yaw 
angle, then followed by rotating around the y-axis by 
the roll angle   and finally by rotating around the x-axis 
by the pitch angle [6]. 

 In order to avoid the system singularities, it is 
important to assume the angles bound  
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The Euler rotation about Z-Y-X or xyzR
is given by 

xyzR = ( , )zR  ( , )yR  ( , )xR   
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C. Quadrotor System Description 

     The nonlinear dynamic models of a quadrotor 

obtained based on Lagrange formalism and 

considering the following assumptions: [7-8] 

• The structure is rigid and symmetrical. 

• The center of gravity of the quadrotor coincides 

with the body fixed frame origin. 

• The propellers are rigid. 

• Thrust and drag are proportional to the square of 

propeller’s speed and rotor dynamics are ignored.  

 

The studied Quadrotor rotorcraft is detailed with 

their body- and inertial frames ( , , , )b b b

bF b x y z=  and 

( , , , )G G G

iF G x y z=  respectively. 

The model partitions naturally into translational and 
rotational coordinates [9] 

( ) 3, ,x y z = R
           

( ) 3    R=  
    (2.5)   

( ), ,x y z =  denotes the position vector of the center 

of mass of mass of the Quadrotor relative to the fixed 

inertial frame and   
( ) 3    R=  

 denotes the 
orientation of quadrotor with respect to inertial frame. 
This is shown below in Figure 1 and Figure 2. 

Figure 1.   Mechanical structure and configuration of quadrotor 

with related frames [9] 

 

Figure 2.  A typical model of a quadrotor helicopter with inertial 

frame and body frame [4] 

 

 

From the figure above, M1 & M3 rotating in 
counterclockwise and M2 & M4 rotating in clockwise 
direction.  

Quadrotor has four propellers that produce thrust 
force, which are proportional to square of propellers 
angular speed. The total thrust force F is the sum of 
individual thrust force of each propellers [9]. 

                       

4

1

i

i

F F
=

=
                                  (2.6) 

                      1 2 3 4F F F F F= + + +
                 (2.7) 

1) Pitch torque 

    It is responsible for turning effect of quadrotor body 

along x-axis. It is directly proportional to the difference 

of thrust force generated by the second and fourth 

propellers 4 2( )F F−  [10-12]. 

 

                  
4 2( )l F F = −                                    (2.8) 
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2) Roll torque 

     It is responsible for turning effect of quadrotor body 

along y-axis. It is directly proportional to the difference 

of thrust force generated by the first and Third 

propellers 3 1( )F F−  [10-12]. 

                           3 1( )l F F = −                                  (2.9) 

3) Yaw torque 
It is responsible for turning effect of quadrotor body 

along z-axis. Which is directly proportional to the 
difference of thrust force generated by all of the 
propellers [10-12]. 

                       1 2 3 4( )c F F F F = − + −
        (2.10) 

4) Moment equation 
Gyroscopic Moment: The gyroscopic moment that 

effects on the physical system due to both the four 
propellers and quadrotor body. The gyroscopic effect of 
rotors is smaller than the one caused by the quadrotor 
body [12]. 

There are two gyroscopic torques, this are due to the 
motion of the propellers (Mgp) and the quadrotor body 
(Mgb) [11] given by: 
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Since quadrotor geometry is symmetric, Ixy = Ixz= 
Iyx = Iyz = Izx = Izy =0. Where Ω is vector of angular 
velocity in fixed earth frame. 
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J is the moment inertia matrix of the Quadrotor, Ix, 
Iy and Iz denote the moment inertias of the x-axis, y-
axis and z-axis of the Quadrotor, respectively. Jr 
denotes the vertical or z-axis inertia of the propellers ‘or 
rotors and wi is the angular speeds of the ith rotor in [9, 
10]. By computing the result of the above equations 
(2.11 and 2.12) 
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                   1 2 3 4r w w w w
−
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Which is the overall residual rotor angular velocity 
of Quadrotor. 

Aerodynamic friction Moment: the quadrotor 
moves in air due to this it is subjected to aerodynamic 
friction. The torque caused by this aerodynamic friction 
is called aerodynamic friction moment. It is given by: 
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4 5 6( , , )Diag k k k
 are aerodynamic friction 

coefficients and 

.
2

 is the angular velocity square 
vector for rotational dynamics. 

Control input for the quadrotor dynamics assign as 
[9] follows 

              

4 4
2

1

1 1

i i

i i

U F b w
= =

= = 
                               (2.21) 

             2 4 2( )U l F F= = −
                            (2.22) 

             3 3 1( )U l F F= = −
                            (2.23)   

             4 1 2 3 4( )U c F F F F= = − + −
                    (2.24) 

D. Modelling with Lagrange Formalism 

To obtain quadrotor dynamics in terms of Lagrange, 
we use the Lagrange partial differential equation. 

                        

.

d L L
F

dt q
q

 
− =



                       (2.25) 

Where q is the generalized coordinate and L is the 
Lagrangian energy function 

( ),F F =                      
( , , , , , )q x y z   =

 

trans rotL U=  + −
    

 trans =   Translational Kinetic energy            
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. .

2

m
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  rot
 =    Rotational Kinetic energy 

rot
 =   

. .1

2
J 

        

 U  =  Gravitational potential energy 

U = mgz
 

  In our case  
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Computing the Lagrange partial differential 
equation for all the six generalized coordinates, get the 
following differential equations 

               

.. .
1 1( )

u k
x c s c s s x

m m
    = + −

      (2.28) 

               

.. .
1 2( )

u k
y c s s s c y

m m
    = − −

      (2.29) 

               

.. .
31( )

ku
z c c z g

m m
 = − −

                  (2.30) 

... . . .
24

( )r zz yyr

xx xx xx xx

I IJ k

I I I I


   

−

−
= − − −

           (2.31)
.

... . .
25( )r xx zzr

yy yy yy yy

I I kJ

I I I I

 
  

−

−
= + − −

         (2.32) 

          

... . .
26

( )yy xx

zz zz zz

I I k

I I I


   

−
= − −

           (2.33) 

E. State Space Equation for Quadrotor Dynamics 

Writing the acquired mathematical model into a 
state space form simplifies the implementation of 
control technique. 

.

( , )X f X U=
                                                                                                                                                                                                             

X  Is State vector, U  is control input vector
. . . . . .

12
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State vector can be written  

( ) 12

1 2 3 4 5 6 7 8 9 10 11 12
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X x x x x x x x x x x x x R= 

     
                                                                                 
(2.35)                                                                                                                                                                           

Control input can be written 

 
( ) 4

1 2 3 4
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The state-space representation of the studied 
Quadrotor is as follows: 

 
.

1 2

.
1 1

2 2

.

3 4

.
1 2

4 4

.

5 6

.
. 31

6 6

.

7 8

.
2

8 1 2 2 10 3 10 12 4 1 8

.

9 10

.
2

10 4 3 5 8 6 8 12 5 4 10

.

11 12

.

12 7 4

( )

( )

( )( , )

r

r

x x

u k
x c s c s s x

m m

x x

u k
x c s s s c x

m m

x x

ku
x c c x gx f x u

m m

x x

x a u a x a x x k a x

x x

x a u a x a x x k a x

x x

x a u

    

    

 

−

−

=

= + −

=

= − −

=

= − −= =

=

= +  + −

=

= +  + −

=

= + 2

8 10 8 6 7 12a x x k a x




























 −    

                                                                         (2.37)                              

Where
1

1

xx

a
I

=

,
2

r

xx

J
a

I

−
=

,
3

( )yy zz

xx

I I
a

I

−
=

,

2u = ,

4

1

yy

a
I

=

,

5

r

yy

J
a

I
=

,

6

( )zz xx

yy

I I
a

I

−
=

, 4u =  ,

7

1

zz

a
I

=

,
8

( )xx yy

zz

I I
a

I

−
=

, 4u =  

III. CONTROL SYSTEM DESIGN 

A. Higher Order Sliding Mode Controller 

1) Super-twisting algorithm 
Consider once more the dynamical system of relative 

degree 1 and suppose that [21] 

             

.

( , ) ( , )h t x g t x u = +
                             (3.1) 

Furthermore, assume that for some positive 

constants C, MK
, mK

, MU
, 

q
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. .

, 0 ( , ) , , 0 1M m M M

h
h U g C K g t x K qU q

g
+       

  

                                                                                         
(3.2)  

The above constants are used for computing 
controller gain range for convergence of sliding surface 
to zero.                                                                                                                             

Then the control signal becomes [21]
1

2 ( )U sign u  = − +
  

. ,

( ),

M

M

u for u U
u

sign for u U 

 − 
= 

−                                 (3.3)                             

Theorem: [21] with mK C   and   sufficiently 

the large, the controller (3.3) guarantees the appearance 

of a 2-sliding mode 

.

0 = =  in system, which 
attracts the trajectories in finite time. The control u 

enters in finite time the segment 
 ,M MU U−

 and stays 
there. It never leaves the segment, if the initial value is 
inside at the beginning. A sufficient (very crude!) 
condition for validity of the theorem is 

2

2
( ) (1 )

( )

(1 )

m M

m

m

K C K q
K C

K q






+ +
−


−

              (3.4) 

2) Design of sliding mode control for altitude (z) 

 
The state space equation for altitude is as follows 

           

.

5 6

.
31

6 6( )

x x

ku
x c c x g

m m
 

=

= − −
                     (3.5)    

   Then the linear sliding surface form as 5 6cx x = +

0c  , c is sliding surface coefficient. If c is larger, 

then the sliding dynamics decays rate is larger. By 

select c be 3, then the sliding surface become 

                       5 63x x = +
                                (3.6) 

    Then computing 

.

 get 

. . .
31

5 6 6 63 3 ( )
ku

x x x c c x g
m m

  = + = + − −
            (3.7)               

    From the above equation we assign 

3

6 6( , ) 3
k

h t x x x g
m

= − − and 
( )

( , )
c c

g t x
m

 
=  

3) Design of sliding mode control for attitude (φ, 

θ) 

For  φ 
The state space equation for pitch is as follows 

.

7 8

.
2

8 1 2 2 10 3 10 12 4 1 8r

x x

x a u a x a x x k a x
−

=

= +  + −
         (3.8) 

Then the linear sliding surface form as 7 8cx x = +  

0c   , if c is larger than the sliding dynamics decays 

rate is larger. By select c be 3, then the sliding surface 

become 

                   7 83x x = +
                                            (3.9) 

Then computing 

.

 get  
.

2

8 2 10 3 10 12 4 1 8 1 23 rx a x a x x k a x a u
−

= +  + − +
               

(3.10) 

      From the above equation we assign 

2

8 2 10 3 10 12 4 1 8( , ) 3 rh t x x a x a x x k a x
−

= +  + −  and 

1( , )g t x a=  

For  θ 
The state space equation for roll is as follows 

      

.

9 10

.
2

10 4 3 5 8 6 8 12 5 4 10r

x x

x a u a x a x x k a x
−

=

= +  + −
       (3.11) 

  Then the linear sliding surface form as 9 10cx x = +     

0c   , if c is larger than the sliding dynamics decays 

rate is larger. By select c be 3, then the sliding surface 

become 

           9 103x x = +
                                                     (3.12) 

Then computing 

.

 get  
.

2

10 5 8 6 8 12 5 4 10 4 33 rx a x a x x k a x a u
−

= +  + − +
             

(3.13) 

From the above equation we assign 

2

10 5 8 6 8 12 5 4 10( , ) 3 rh t x x a x a x x k a x
−

= +  + −  and 

4( , )g t x a=  

4) Design of sliding mode control for heading (ψ) 

 
The state space equation for yaw is as follows 

                

.

11 12

.
2

12 8 10 8 6 7 12 7 4

x x

x a x x k a x a u

=

= − +
         (3.14) 

Then the linear sliding surface form as 11 12cx x = +    

0c   , if c is larger than the sliding dynamics decays 

rate is larger. By select c be 3, then the sliding surface 

become 

                   11 123x x = +
                                       (3.15) 
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 Then computing 

.

  we get   
.

2

12 8 10 8 6 7 12 7 43x a x x k a x a u = + − +
                     (3.16)                   

From the above equation we assign 

2

12 8 10 8 6 7 12( , ) 3h t x x a x x k a x= + −  and 7( , )g t x a=  

B. Calculated Controller Parameters for Control 

The controller parameters listed below in table 1 are 
calculated based on the above theorem. 

TABLE I.  REGULATION PROBLEM CONTROLLER 

PARAMETERS FOR SLIDING MODE CONTROL 

IV. SIMULATION RESULT AND ANALYSIS 

A. Parameter Used for Simulation 

TABLE II.  PHYSICAL PARAMETERS FOR QUADROTOR [11] 

B. Initial Conditions 

The physical system is excited by initial conditions 
as follows for simulation. 

             

.

.

.

.

(0) 6

(0) 1 /

(0) 0.174

(0) 1.74*10 ^ 3 /

(0) 0.174

(0) 1.74*10 ^ 3 /

(0) 0.174

(0) 1.74*10 ^ 3 /

z m

z m s

rad

rad s

rad

rad s

rad

rad s













=

 =


=


= −


=


= −
 =



= −               (3.17) 

The values in equation (3.17) represent altitude, 
altitude rate, pitch, pitch rate, roll, roll rate, yaw and 
yaw rate values at time equals to zero. 

C. Simulation Graphs and Analysis 

For simulation purpose, the parameters listed in 
table 2 are used.  

In order to verify the validity and efficiency of the 
control proposed here, a simulation is performed. The 
experiment simulates a regulation task, which involves 
regulation on altitude, attitude and heading.  

The solver used in the simulation is ode1 (Euler) 
with a fixed step size of 0.001s. Figure 3 below 
illustrates the Simulink implementation of the 
controller. 

Figure 3.  Simulink block diagram for control system 

 

1) Altitude controller regulation performance (Z) 

Figure 4.  Altitude regulation controller performance 

 

In figure 4, the result shows the regulation controller 
performance of altitude controller. As we see from the 
figure, the quadrotor initially placed at 6m above the 
ground and has upward altitude rate of 1m/s. The 

 

Variables/states 

 

 

 for Super-

twisting SMC 

 

 for Super-

twisting SMC 

Z (altitude) 38 1 

Pitch (phi) 0.5 1 

Roll (theta) 1 1 

Yaw (psi) 1 1 

Parameter  Value and unit 

Arm Length(l)  0.5m 

Total mass 0.5 kg 

Quadrotor mass moment 

of inertia (I) 
diag(0.005,0.005,0.01) kgm^2 

 Motor inertia (Jr ) 2.8385*10-5 N.m/rad/s2 

 Lift Coefficient (b) 2.984*10-5 

 Drag Coefficient(d) 3.3*10-7 

 Aerodynamic friction 

Coefficients (K1,2,3) 
0.3729 

 Translational drag 

Coefficients (K4,5,6) 
5.56*10-4 

Gravitational 

acceleration(g)  
9.81 m/s2 
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mission of the controller is to bring the quadrotor from 
6meter to the ground (0meter) as soon as possible. As 
expected, the controller brings the quadrotor to the 
ground. The controller requires 140 second (2 minute & 
20 second) to accomplish the mission. 

2) Pitch controller regulation performance 

Figure 5.  Pitch regulation controller performance 

 

In figure 5, the result shows the regulation controller 
performance of pitch controller. As we see from the 
figure, the quadrotor initially has pitch inclination angle 
of 10 degree or 0.174 radian with angular speed of 0.1 
degree per second. The mission of the controller is to 
bring the quadrotor pitch inclination to zero degree. As 
expected, the controller brings the quadrotor pitch 
inclination to zero degree at a time of 2 seconds. 

3) Roll controller regulation performance 

Figure 6.  Roll regulation controller performance 

 

In figure 6, the result shows the regulation controller 
performance of roll controller. As we see from the 
figure, the quadrotor initially has roll inclination angle 
of 10 degree or 0.174 radian with angular speed of 0.1 
degree per second. The mission of the controller is to 
bring the quadrotor roll inclination to zero degree. As 
expected, the controller brings the quadrotor roll 
inclination to zero degree at a time of 3.2 seconds. 

4) Yaw controller regulation performance 

Figure 7.  Yaw (heading) regulation controller performance 

 

In figure 7, the result shows the regulation controller 
performance of yaw controller. As we see from the 
figure, the quadrotor initially has yaw inclination angle 
of 10 degree or 0.174 radian with angular speed of 0.1 
degree per second. The mission of the controller is to 

bring the quadrotor yaw inclination to zero degree. As 
expected, the controller brings the quadrotor yaw 
inclination to zero degree at a time of 1.7 seconds. 

5) Control signal for regulation 

Figure 8.  Altitude control signal for regulation control 

 

In figure 8, the result shows the altitude control 
signal of the controller. The control signal is in practical 
region. The practical region is within 0 to 50 newton 
force interval. The motors can generate this amount of 
thrust force with 3000-rpm speed. With 3000-rpm 
speed, the motors can generate 6-newton force. 

Figure 9.  Pitch control signal for regulation control 

 

In figure 9, the result shows the pitch control signal 
of the controller. The control signal is in practical 
region. The practical region is within 0 to 5 newton-
meter torque. One motor can produce 1.6 newton at 
3000 rpm. Making one motor stationary and other one 
rotates at 3000 rpm can get 0.8 newton meter torque. 
From the figure, the maximum bound on pitch control 
signal is 0.6 newton meter, which is less than 0.8 
newton meter. 

Figure 10.  Roll control signal for regulation control 

 

In figure 10, the result shows the roll control signal 
of the controller. The control signal is in practical 
region. The practical region is within 0 to 3 newton-
meter torque. One motor can produce 1.1 newton at 
2500 rpm. Making one motor stationary and other one 
rotates at 2500 rpm can get 0.55 newton meter torque. 
From the figure, the maximum bound on roll control 
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signal is 0.45 newton meter, which is less than 0.55 
newton meter. 

Figure 11.  Yaw control signal for regulation control 

 

In figure 11, the result shows the yaw control signal 
of the controller. The control signal is in practical 
region. The practical region is within 0 to 3 newton-
meter torque. One motor can produce 1.1 newton at 
2500 rpm. Making one motor stationary and other one 
rotates at 2500 rpm can get 0.55 newton meter torque. 
From the figure, the maximum bound on yaw control 
signal is 0.12 newton meter, which is less than 0.55 
newton meter. 
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CONCLUSION 

In this paper, the nonlinear dynamic model of 
quadrotor is derived using Lagrange formalism. The 
model contains two parts namely translational and 
rotational dynamics (Euler-angle dynamics). The 
nonlinear model incudes the gyroscopic moments 
induced due to rotational motion of quadrotor body & 
propellers mounted on rotors. Besides, aerodynamic 
friction moment & force are considered in the model-
ling. After the derivation of dynamic model, nonlinear 
control strategy (higher-order SMC) based on super-
twisting algorithm is designed. 

In order to verify the performance and efficiency of 
the controller, a simulation is done via 
Matlab/Simulink. The higher order SMC is designed 
for four output-controlled variables separately. The 
controlled variables are altitude, pitch, roll and yaw. 
The higher-order SMC implemented on the physical 
system for regulation problem. The controller is very 
effective; it can regulate the physical system with fast 
& smooth response and good stability. The control 
effort used by the controller to regulate the system is so 
small and within practical limit. Overall, the second-
order SMC controller designed for the quadrotor system 
is efficient and having very good performance. 
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