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Abstract – This paper presents the modeling and 

control of a fixed-wing unmanned aircraft. The 

flight dynamics of this system is obtained by using 

Newton’s second law of motion. After that, a non-

linear PID (NPID) controller is designed for this 

system which is also useful to minimize the 

difference that could be caused when using a 

linearized model of this system. To check the 

robustness of the controllers, an external 

disturbance is added throughout the simulation 

time; in addition, the controller gain values are 

kept in an acceptable range. Furthermore, H2 and 

H∞ norms have been used to get a numerical 

representation of the robustness; the frequency of 

the control signal to the system has been 

measured. Finally, using the non-linear model of 

the system; the designed controller is simulated on 

MATLAB Simulink software. The results show 

that the states followed the desired trajectory with 

an acceptable control effort in the presence of 

external disturbance having an input signal that 

would not be harmful to equipment.  

Keywords: UAV, fixed-wing UAV, Flight Dynamics, 

PID, NPID 

I. INTRODUCTION 

UAV is a short abbreviation for unmanned aerial 
vehicles. These vehicles have many applications. They 
can be used in missions that are dangerous to humans 
or even tiresome. Even though they can be classified 
under different categories, they mainly fall under 
fixed-wings and rotary-wing UAVs. Fixed-wing 
UAVs have the capability of long-range flight due to 
the structure they possess; this structure also gives 
them the ability to carry greater payload and still fly at 
high speed. Conversely, it is still a challenge to control 
these aircrafts to the fullest because of modeling 
uncertainties and external disturbances. Different 
control algorithms have been formulated to enhance or 
rather tackle any flight problems that a fixed-wing 
UAV might face. To mention some from both linear 
and non-linear control methods; PID [1], adaptive PID 
[2], optimal control [3] are common. Extended 
observers have also been used together with different 
controllers like SMC to overcome problems that arise 
from external disturbances [4]. 

Chosen for its simplicity and less computational 
resources a PID controller remains to be in the market 
for the control of a UAV [5] [6]. Nonetheless, to 
design a PID controller linearization of the system 
dynamics is the first step. In [7], a fixed-wing aircraft 
is linearized to evaluate the difference and similarity 
between the linear and non-linear version of the 
model; from the simulation analysis, it showed that 
there are differences in frequency and amplitude 
between the two approaches; and this amplitude 
difference keeps on growing when deflection of the 
control surfaces increases, this will, in turn, lead to 
modeling uncertainty. Keeping in mind that this 
classical controller is still in use. In this paper, a non-
linear PID controller is designed to minimize the 
difference that could be caused when using a linear 
model. 

To check the robustness and performance of the 
controller, an external disturbance is added and all the 
controller gains are taken in an acceptable range. The 
organization of this paper is presented as follows; 
section 2 presents the mathematical modeling of a 
fixed-wing UAV. Followed by the controller design in 
section 3. Simulation and result analysis are elaborated 
in section 4. Lastly, the conclusion and 
recommendation are found in section 5. 

II. MATHEMATICAL MODELLING 

     To simplify the modeling, the following 
assumptions are taken. The aircraft is assumed to be a 
rigid body in space and the mass of the UAV is 
constant. Furthermore, the earth is assumed to be an 
inertial frame of reference, the aircraft is symmetric on 
the XZ plane, and the CG of the aircraft body 
coincides with the body-fixed frame. 

Coordinate systems are used to locate a certain 
point in space; in this case, we use it to describe the 
forces acting on the aircraft and the motion that comes 
afterward. In this regard, the coordinate systems can 
be given as in [8]. The inertial frame (fixed frames that 
are fixed to the distant stars and do not rotate with 
earth), body carried frame (frames that are attached to 
the aircraft and moves with the aircraft but do not 
rotate), body-fixed reference frame (attached to the 
center of gravity of the aircraft and rotates with the 
aircraft) and wind reference frame (used to express the 
forces and moments acting on the unmanned aircraft 
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due to wind). The direct cosine matrices 
b

eR
 is taken 

to rotate from earth frame to body frame. (See [8]). 
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                             (1)

   

The kinematics and dynamics of the fixed-wing 
UAV are analyzed by using the Newton-Euler method 
as in [9].  
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Where , ,
T

bF x y z=     are the external forces defined in 

the body frame. 
*

[ , , ]
cg

b cg cg cgr x y z=  : are the locations 

of CG on the body frame. , ,
Tg

bv u v w=    : are body 

frame expressions of earth linear velocity 

components. , ,
T

p q r =    : are body frame expressions 

of earth angular velocity components. 
Using equations (2) and (3), the generalized 6-

DOF equation that describes the motion including the 
time rate of change of Euler angles can be 
summarized.  
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     (5) 

To avoid singularity or gimbal lock, the Euler 
angle boundaries are taken as: 

, ,
2 2 2 2

   
    −   −   −    

A.  Forces and Moments 

The main moments and forces acting on a fixed-
wing aircraft are 

I. Gravitational force ,0,0
Tg

bF mg=    ,  

II. Thrust force ,0,0
T

tr trF F =   ,  

III. Thrust moment ,0,0
T

tr trM M=    , 

IV. Aerodynamic-forces 

        
21

[ , , ] , ,
2

Tb

L D Y a w L D YF F F v sR C C C=    , and  

V. Aerodynamic-moment  

21
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Where 
b

w
R the rotational matrices from wind frame to 

body frame is, 2 2 2

av u v w= + +  is the airspeed, 

1
tan

w

u
 −  
=  

 
 is the angle of attack, and 

1
sin

a

v

v
 −  
=  

 
 is the sideslip. Furthermore, wingspan 

b, chord c, and surface area of the wing s are constants. 

Mass is denoted by m, gravity is denoted by g and   

denotes the air density. LC  and its corresponding 

arguments are the non-dimensional coefficients and are 

presented in equation (6). 
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a
 ,

e
  and 

r
  are the control surfaces of the aircraft. 

Together with thrust force, they are the four inputs of this 

system.  

III.  CONTROLLER DESIGN 

The conventional PID is one type of classical 

controller design technique that is widely used in 

industrial control systems. This controller is a closed-

loop 

 
Figure 1. Linear PID 

 

From Figure 1 we can see it consists of a plant to be 

controlled, feedback that measures the output, and a 

controller. The controller can be given mathematically 

as:                                                                          

0
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= + +                    (7)                                                       

Where U is the control input , ,p i dk k k  are the 

proportional, integral, and derivative gains respectively. 

The proportional gain is used to reduce the error. The 

integral gain is used to reduce steady-state error. Whereas 

the derivative gain is for damping 

 In this paper, the non-linear version of this 

classical controller is designed simply because a linear 

controller cannot be implemented for a non-linear 

system. NPID controller is used in achieving things 

like reduced rise time for step inputs, better tracking 

accuracy, and increased damping [10]. The algorithm 

of this controller is based on a non-linear function as 

an essential part. Hence the NPID controller is given 

us: 

        
( , , ) ( , , )

( , , )

p p p p i i i i

d d d d
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= + +
            (8)  

Where , ,p i dk k k  are the controller gains and they are the 

same as the ones found in classical control.   is the error 

weighting.   is a parameter that defines the linear area. 

( , , )x    is the non-linear function defined by  

1

. ( ),           when 
( , , )

. ,                    when 
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      (9) 

From [10], p  should be larger than one to get a more 

sensitivity to small errors, i  should be between the 

values of -1 and 0 to reduce the integral action when the 

error is large and lastly the error weighing of the 

derivative, d , should be larger than one to make the 

differential gain smaller at a smaller error.   Defines the 

linear area in the non-linear function and since the 

aircraft’s system is highly non-linear   is chosen to have 

a small value. Hence, for the reasons mentioned, 

[ , , ]p i d    is chosen as [1.6, 0.5,1.1]−  and   as 

0.01. 
Since there is no tuning mechanism to tune the 

gain values, first 
( , , )x  

 is found by different 
methods like gradient descent, the hessian matrix, 
extreme value theorem and mean value theorem for 
both attitude and airspeed control. The gradient 
descent method is used to find only the relative or 
absolute minima and the Hessian matrix is used to find 
the maxima and minima for a function of several 
variables. In this paper, the mean value theorem is 

used to find the error
( , , )x  

. 

Theorem 2 [11]: “if f is a continuous function over 
the closed, bounded interval [a, b], then there is a point 
in [a, b] at which f has a relative maximum over [a, b] 
and there is a point in [a, b] at which f has a relative 
minimum over [a, b]”.  Rewriting equation (9) as: 
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For attitude and airspeed control, first, 

assume the initial control signal as 0.3 rad and 18N 

respectively. Furthermore, say these values are 

produced equally by the proportional, integral, and 

derivative. For airspeed: 
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 Hence: 
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 Assuming an initial error boundary of [-0.007, 0.0001] for 

attitude and [-0.03, 1.5] for airspeed, the gain value is 

found as follows. 

Step 1: Find the derivative of the function ( , , )x   . 

Step 2: find the critical point at
'( , , ) 0x   = . 

Step 3: solve for ( , , )x    at critical point and 

boundary conditions. 

Step 4: Repeat the process for all three ( , , )x    

functions and the maximum value is the relative maxima 

and the minimum value is the relative minima. Computing 

the gain values for the error values obtained at step four 

gives:  
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Hence, the attitude and airspeed gains are presented as 

[334, 0.001, 34.6] and [150, 0.39, 1.3] respectively. 

A. Design Of NPID Algorithm  

In this section, a non-linear PID is designed for 

attitude and airspeed control of the aircraft. Using 

Hurwitz's characteristics equation to create the sliding 

manifold as in [12]. 
1

1 2( ..... ) 0
m

ma a s a s
−+ + + = …Hurwitz characteristics   

 

1) Design of NPID Controller for Attitude 

Tracking Problem 

Referring back to equation (3); we will drive 

expression for attitude control. 
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Eliminating the linear velocity term will give: 
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Simplifying the equation gives: 
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Rewriting the moment equation gives 
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Forming a state space, and designing a controller we 

consider the following assumptions 
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Forming the error from the states 
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2) Design of NPID Controller for Airspeed 

Tracking Problem 
The velocity vector that is expressed in wind axes, 

has an x- component equal to the true airspeed Va  and 
no other components [13]. Hence we will find the 
airspeed by this method by taking the x component of 
equation (4) and ignoring the angular rates 

. .
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Since we are going to calculate the x-component 

we need to express the forces in the wind frame. 
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.......... )........ ......................................(23

t D
a

c c F q sc
v c c s g s s c g

m m

s c c c g

 

  

 

  

 

−

= + − + +

  
Where Ft= U4. 

Forming a state space, and designing a controller 
we consider the following assumptions 

Let 
3 a

x v=  and 
.

4 a
x v=  hence 

.

3 4
x x=   and  

.

4
( , ) ( )x h x t d x u= +                    (24) 

( , ) D
q sc

h x t c c gs s s c g s c c c g
m

         

−

= − + +  

               (25) 

( )
c c

d x
m

 
=           (26) 

Forming the error from the states 

3d
e x x= −  

 

IV. SIMULATION AND RESULT ANALYSIS 

 

A. Tracking Problem Result 
This section presents the tracking performance of a 

non-linear PID. The desired value for the attitude and 
airspeed control has been varied throughout the 
simulation run time. Initially, the airspeed is thought to 
be at 12m/s whereas the Euler angles are taken as 0 
radians. An external random disturbance is added 
throughout the simulation time. For phi and psi from -
0.7 to 0.7 rad, for theta from -1 to 1 rad and airspeed 
[230N,350N] at [35s, 60s], this is done to see how 
much the proposed controller would work in the 
occurrence of randomness or external disturbance. 

Figure 2 shows the NPID controller tracking result 
for roll control. As seen in figure 2, the actual state of 
the aircraft can track the reference value. When the 

desired value changes instantly, the controller can 
track the change in a short period of time. 

 

         Figure 2. NPID Roll Tracking 
 

Figure 3 shows the NPID controller tracking result for 

pitch control. As seen in figure 3, the actual state of 

the aircraft can track the reference value. When the 

desired value changes instantly, the controller can 

track the change in a short period of time. 

 

Figure 3. NPID pitch Tracking 

 
Figure 4 shows the NPID controller tracking result 

for yaw control. As seen in figure 4, the actual state of 
the aircraft can track the reference value. When the 
desired value changes instantly, the controller can 
track the change in a short period of time. 

 

 
Figure 4. NPID Yaw Tracking 

 
Figure 5. NPID Airspeed Tracking 

 
Figure 5 shows the tracking performance result of 

the NPID controller for airspeed control. Initially, the 
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state was at 12m/s, and as seen from figure 5 the actual 
state of the system can track the desired or reference 
value.   

 

Figure 6. NPID Attitude Error 

 

Figure 6 shows the tracking error of the attitude 
control phi, theta, psi. As can be seen from figure 6, 
the error has a spike from -0.1 to 0.1 when there is a 
change in the desired or reference values. However, it 
reduces to zero in a very short instant. Furthermore, 
Figure 7 shows the tracking error for airspeed control. 
The spikes that occurred when the reference values 
changes are reduced to zero in a short time. 

 
Figure 7. NPID Airspeed Error 

B. Input Signal for NPID Tracking Problem 

 

         Figure 8. NPID Attitude Control Signal 
 

Figure 8 shows the attitude control inputs whereas 
Figure 9 shows the control input for airspeed tracking. 
As seen from figures 8 and 9 the control efforts needed 
to achieve tracking problems are in an acceptable 
range. When there is a sudden change in the desired or 
reference signal, there appears to be a spike in the 
input signal and that happens because of the controller 
action that is when the error becomes larger the 
controller gives more effort (energy) to overcome this 
change. 

    

 
     Figure 9. NPID Airspeed Control Signal 
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Figure 10. 3D Trajectory Tracking of NPID 

 

Figure 10 shows the three-dimensional trajectory 

tracking of NPID. From figure 10, it is seen that the 

states followed the desired trajectory very closely. 

TABLE I.  FREQUENCY OF NPID TRACKING PROBLEM INPUT 

SIGNAL 

States Frequency(Hz) 

Airspeed 0.7 

phi 0.0019 

theta 0.0027 

psi 0.0019 

 
Table 1 shows the input signal frequency that is 

given from the system. As seen from table 1, the 
frequency response of the input signals is good and 
does not harm devices if implemented in real-time 
flight. 

C. Robustness Analysis 

The H2 and H∞ norms are used to check the 
robustness or the performance of the controller. H2 
norm is used to find the energy gain of the system and 
H∞ is used to find the power gain of the system. This 
is achieved by taking the norm of the plant’s output or 
the states. Equation (27) and (28) are used to find the 
H2 and H∞ norms.  

2

2
( ) ( )

i

i

u t u d 


−

=    (27) 

( ) max(max ( ) )
i

u t u




=   (28) 

Consider a system represented as follows 
.

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

w u

z zw zu

y yw yu

x t Ax t B w t B u t

z t c x t D w t D u t

y t c x t D w t D u t

= + +

= + +

= + +

 (29) 

Where x(t) is the state, z(t) is the desired input signal W(t) 

is the disturbance input. For an impulse input the transfer 

function G(s) in the frequency domain   

lim ( ) 0G j



→

=  

The controller is robust when the system is strictly 
casual that is D=0 and the desired input and the 
measured input are similar because the inputs will 
depend on the gain value of the states [14]. Analysing 
H∞ norm to check the robustness of the system, the 
H∞ should fulfil the following conditions. 

H∞<1 
Table 3 shows the H∞ norm of the system 

robustness analysis quantitatively. The maximum 
values for the H∞ and H2 is less than one. This 
indicates that the controller is robust to model 
uncertainty and external disturbance [15]. 

TABLE II.  NPID ROBUSTNESS ANALYSIS 

States H2 H∞ 

Airspeed 0.8955 0.99896 

phi 0.0003804 2.0854e-4 

theta 0.0005432 6.9678e-5 

psi 0.0003804 2.085e-4 

 

CONCLUSION 

In this paper, modeling and control of a fixed-wing 
unmanned aircraft is addressed. To find the flight 
dynamics Newton’s second law of motion is used.; a 
six degree of freedom equation of motion was 
established and to avoid singularity in the system; the 
three rotational angles were bounded. To control this 
non-linear system a non-linear PID control algorithm 
is designed for tracking problems; for airspeed and 
attitude control of a fixed-wing unmanned aerial 
vehicle. To check the robustness of the controllers, an 
external disturbance is added throughout the 
simulation time; in addition, the controller gain values 
are kept in an acceptable range. Furthermore, H2 and 
H∞ norms have been used to get a numerical 
representation of the robustness; the frequency of the 
control signal to the system has been measured. 
Finally, using the non-linear model of the system; the 
designed controller is simulated on MATLAB 
Simulink software. The results show that even when 
there is an external disturbance, the states followed the 
desired trajectory. The control signal given to the 
system has a magnitude that is in an applicable range 
for equipment. Furthermore, this control signal has a 
frequency that is not harmful to devices that are used 
for this system. 

 FUTURE WORK 

 For future work, the dynamic modeling of this 
system can be enhanced by reducing the assumptions 
taken like the mass being constant. The proposed 
controller can be further analyzed by hardware in the 
loop simulation and real-time flight to check their 
robustness. The tuning mechanism for the non-linear 
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PID can be extended to other optimal tuning 
mechanisms. 
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