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Abstract - The structure of the studied IMC algorithms 

incorporates a plant model of first or second order plus 

deadtime (which can be obtained experimentally from 

the plant response to a step input) and a realizable inner 

controller of first or second order. The inner controller 

has not a tuning filter time constant as usual, but a 

tuning gain K  that can be used by the process operator 

to generate a stronger or weaker control action. All 

algorithms have mainly four parameters: the tuning 

gain K  and three model parameters (the model steady-

state gain, the model deadtime and the model transient 

time). Some numerical applications are presented to 

show the control performance of each proposed 

algorithm for both proportional-type plants with and 

without overshoot. 

Keywords: first/second order, overdamped/underdamped, 

overshoot, plant model, deadtime, IMC design. 

I.  INTRODUCTION  

In the Internal Model Control (IMC) strategy, if a 

model of the controlled plant can be determined, then 

it can be used explicitly in the design of the 

controller, even the model is an approximate one. In 

the control system domain, the IMC concept was 

introduced and consolidated by Garcia and Morari in 

1982, but similar concepts have been used previously 

by other researchers [2,8,9,14]. Theoretically, the 

complexity of a controller designed by the IMC 

method depends mainly on the complexity of the 

plant model and the control system performance 

stated by the designer.  

The IMC design can provide a qualitatively better 

performance than PID design, especially for the plants 

with large deadtime [1,12,13]. In addition, the IMC 

design leads in some particular cases to a PID 

structure. Even if the plant model is imperfect, it is 

still possible to design an IMC controller without 

concern for the stability of the closed-loop control 

system, but only for the control performance. For 

many plant models, the classical PID controllers can 

be viewed as equivalent parameterizations of IMC 

controllers [1,15]. The traditional IMC design of the 

controller depends on the plant transfer function.  

The standard IMC configuration is shown in figure 

1, where ( )PG s  is the plant transfer function, ( )MG s - 

the model transfer function, ( )iG s - the inner controller 

transfer function,  ( )Y s - the controlled variable, ( )U s - 

the control (manipulated) variable, ( )R s - the reference 

(setpoint), ( )E s - the error variable and ( )V s - the 

disturbance variable [2,3,4,5,6].  

  
Figure 1. IMC system. 

The transfer function between the controlled 

variable Y  and the reference variable R  has the 

expression 
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while the transfer function between the controlled 

variable Y  and the disturbance variable V  is 
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Under the assumption that  

                        
1

(0)
(0)i

M

G
G

 ,                  (3) 

 it follows that 

                      (0) 1YRG  ,   (0) 0YVG  . 

According to this result, the steady-state value of 

the controlled variable y  is equal to the steady-state 

value of the reference variable r  whatever the steady-

state value of the disturbance variable v . An ideal 

control system forces the controlled variable y  to 

follow the reference variable r  instantaneously and 

suppresses the disturbance effect on the controlled 

variable y  [7,11,15]. This is possible if and only if the 
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inner controller transfer function ( )iG s  is the inverse 

of the model transfer function ( )MG s , i.e. 

                      
1

( )
( )i

M

G s
G s

 .                              (4) 

If this condition is satisfied, then  

           ( ) 1YRG s  ,    ( ) 0YVG s  , 

therefore ( ) ( )y t r t  for any time and any disturbance 

( )v t . Thus, to design an ideal control system, it is not 

necessary to have a perfect model, which means that 

( ) ( )M PG s G s . Unfortunately, the inner controller 

cannot perfectly invert the plant dynamic model. 

Therefore, the classical IMC design methodology 

follows mainly two aims: to find a plant model as 

accurate as possible and a suitable proper inverse of 

the plant model [4,10,14,16]. 

The further section presents a practical approach of 

the IMC method starting from the hypothesis that, 

whatever the controlled plant (with or without 

overshoot), the plant model has a unique form (of first 

or second order plus deadtime).   

Other practical features of the three control 

algorithms are the use of the tuning gain K  instead of 

a tuning filter time constant (as usual) and the 

possible extension of the studied algorithms to control 

integral-type plants or even unstable plants.  

 

II. DESCRIPTION OF THE CONTROL 

ALGORITHMS 

In this paper, the plant is considered with deadtime 

and of proportional-type (with no pole and no zero at 

the origin, i.e. with a steady-state gain nonzero and 

finite). A first-order plus deadtime  plant model has 

the transfer function 
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where MK  is the model steady-state gain, 1MT - the 

model time constant and M - the model deadtime. For 

the second-order plus deadtime model, we consider the 

transfer function with double time constant 
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The time constants 1MT  and 2MT  can be easily 

obtained from the plant response ( )y t  to a step plant 

input ( )u t  using the relations 

      1 4
trP

M

T
T  ,                          (7) 

                   2 6
trP

M

T
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where trPT  is the transient time of the plant response 

( )y t  (which does not include the deadtime). More 

precisely, 

      1trPT t   ,                          (9)  

where   is the process dead time and 1t  is the settling 

time, when the response y  attains 98 % of its steady-

state value, that   is 

              1( ) 0.98 ( )y t y  .                       (10) 

For the plant model (5), we will use the inner 

controller  

           1
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while for the plant model (6),  we will use either the 

inner controller (11) or 
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where the filter time constants 1T  and 2T  were 

introduced to make the inner controller realizable (to 

have the number of poles equal to the number of 

zeros). The positive time constants 1T  and 2T  are 

lower bounded to avoid excessive noise amplification 

and to accommodate to the modeling error. In the 

traditional IMC strategy, the filter time constant is the 

tuning parameter of the controller, used by the process 

human operator to change the magnitude of the control 

action.  

Using the substitutions 

        1
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the proportional gain K  (with standard value 1) is 

introduced as tuning parameter. The inner controllers 

(11)  and (12) become as follows: 
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For both controllers (14) and (15), the initial value  

(0 )u   and the final value ( )u   of the response ( )u t  to 

a unit step reference are 

                  (0 ) ( )i
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K    .                      (16)  
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By increasing/decreasing the tuning gain K , the 
process human operator can make the control action 
stronger/weaker. 

The magnitude coefficient M of the controllers 
(14) and (15), defined as the ratio between the initial 

value (0 )u   and the final value ( )u   of the response 

( )u t  to a unit step input, is given by 
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In the case 1K  , the inner controllers (14) and 

(15) become identical and purely proportional: 

            1 1
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In this particular case, if the model is perfect, then the 

control system response ( )u t  to a unit step reference is 

a step function of magnitude 1/ PK , i.e. 

                                
1

( ) 1( )
P

u t t
K

  .          

Actually, because of the modeling error, the form of 

the response ( )u t  is only close to a step form. 

The control algorithms has four parameters: a 

tunable control gain K  (with standard value 1K  ), 

which can be used by the process operator to get a 

strong or weak control action, and three plant 

parameters, that can be easily determined 

experimentally: the model steady-state gain MK , the 

model deadtime M  and the transient time of the 

model response to a step input trMT . There is a simple 

procedure to verify online if the plant parameters have 

appropriate values and to adjust these values in order 

to obtain a good plant model. To make this, it only 

needs to set 1K   and to compare the controller 

response to a step reference with the ideal response in 

step form.  

The discrete equivalents of the continuous models 

(5) and (6) have respectively the discrete transfer 

functions 
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where 

                      4 // 11
T TT T trMMp e e  ,                        

                      6 // 22
T TT T trMMp e e  ,                      

T  is the sampling time and  Ml  is the integer value of 

the ratio between the model deadtime and the 

sampling time; that is, 

      M
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The discrete equivalents of the continuous inner 

controllers (14) and (15) have respectively the discrete 

transfer functions 
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where 

                    4 // 11
KT TKT T trMMr e e  ,   

                   6 // 22
KT TKT T trMMr e e  .        

The proposed algorithms follow by combining     

the plant models 1MG  and 2MG  with the inner 

controllers 1iG   and 2iG : 1MG + 1iG  - algorithm 1; 

2MG + 1iG  -  algorithm 2; 2MG + 2iG  -  algorithm 3. 

The discrete equations of the proposed control 

algorithms are given by the following equations. 

            algorithm 1:   
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             algorithm 3:   
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where 

                             
2

1A r K   .                          

Remark 1. In order to reduce to zero the initial 

magnitude of the controller output (0 )u   for a 

reference step, a low pass pre-filter with the transfer 

function  

                            
1

( )
1F

F

G s
T s




          (28) 

can be used on the reference signal. Choosing a filter 

time constant  

                                 
0

10
tr

F

T
T  ,                        (29) 

where 0
trT  is the transient time of the closed-loop 

control system with 0FT   to a step reference, 

provides a suitable slowness of the controller output  

u . 

Remark 2. The presented control algorithms can 

be also used to control a proportional-type plant with 

overshoot. The basic idea is to use a model steady-

state gain larger than the plant steady-state gain, 

                           1 2( )M PK K  ,                   (30) 

where   is the plant overshoot to a step input. Thus, 

the control system response ( )u t  to a step reference 

has a smaller initial value, and the overshoot of the 

plant response is reduced or vanished. In addition, we 

recommend choosing a model transient time trMT  as 

small as possible to have, for a step reference, both a 

good plant response ( )y t  and a controller response 
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( )u t  not excessively oscillatory. The tuning gain K  

can be decreased to reduce a possible too large 

overshoot of the plant response to a step reference.  

III. SIMULATION RESULTS 

The presented control algorithms will be used to 

control two proportional-type plants with deadtime, 

one without overshoot and another with overshoot. 

All simulations are made using MATLAB/ 

SIMULINK environment. 

  A. Consider a proportional-type plant with 

deadtime and without overshoot having the transfer 

function 

                  
52( 1)

( )
(4 1)(8 1)(10 1)

s

P

s e
G s

s s s


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. 

From the plant unit step response in Figure 2, it 

follows that  

                   2MK  ,  6M  ,  64trMT  .  

 
 Figure 2. Plant response to a unit step input. 

First algorithm. The first control algorithm provides 

the closed-loop control system responses to unit step 

reference in Figures 3, 4 and 5. Since the controller 

response in Figure 3 (for 1K   and  0FT  ) is not 

close to a step form, it follows that the first-order 

model with dead time (5) cannot describe with 

sufficient accuracy the plant sluggishness. However, 

the control system responses in Figure 4 ( 0.85K   

and 0FT  ) and Figure 5 ( 0.85K   and FT   

0 /10 4trT  ) have a transient time of approximately 

40, which is sufficiently small for the given controlled 

plant.   

                             

 
  Figure 3. Control system responses to a  unit step reference 

                                   for 1K   and  0FT  . 

 
       Figure 4. Control system responses to a unit step reference    

                               for 0.85K   and  0FT  . 

              
       Figure 5. Control system responses to a unit step reference 

                                  for 0.85K   and  4FT  . 

Second algorithm. The second control algorithm 

provides the control system responses to unit step 

reference in Figures 6, 7 and 8. We can see that the 

controller response in Figure 6  ( 1K   and 0FT  ) 

is close to a step form,  therefore the second-order 

model with deadtime (6) can describe with sufficient 

accuracy the plant dynamics. The control system 

responses in Figure 7 ( 3K   and 0FT  ) and Figure 

8 ( 3K   and  0 /10 2.4F trT T  ) are sufficiently 

fast for the given controlled plant. From these 

responses, we can see that the transient time is 

approximately 24, hence smaller than the one 

obtained with the first control algorithm.  
 

       
  Figure 6. Control system responses to a unit step reference 

                                   for 1K   and  0FT  . 

 
   Figure 7. Control system responses to a unit step reference 

                                    for 3K   and  0FT  . 
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Figure 8. Control system responses to a unit step reference 

                                 for 3K   and  2.4FT  . 

Third algorithm. The third control algorithm yields 

the control system responses to unit step reference in 

Figure 6 ( 1K   and 0FT  ), Figure 9 ( 8K   and 

0FT  ) and Figure 10 ( 8K   and 0 /10F trT T  

1.5 ). The responses in Figures 9 and 10 are very 

fast for the given controlled plant. According to these 

responses, the transient time is approximately 15 

(hence smaller than the one provided with the second 

control algorithm), but the magnitude coefficient M  

of the controller response ( )u t  is too large for 0FT   

( 8M K  ). For 0 /10 1.5F trT T  , the magnitude 

coefficient M  reduces to 4 . 

 
  Figure 9. Control system responses to a unit step reference 

                                    for 8K   and  0FT  . 

 
    Figure 10. Control system responses to a unit step reference 

                                      for 8K   and  1.5FT  . 

  B. Consider now a proportional plant with 

deadtime and overshoot having the transfer function 
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s e
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From the plant unit step response in Figure 11, it 

follows that 2PK  , 5P   and 36% 0.36   . 

We will choose 5M   and 

         1 2 1 2 0.36 2 4.4( ) ( )M PK K     . 

 
 Figure 11. Plant response to a unit step input. 

First algorithm. Good plant responses to a unit step 

reference are obtained for 4MtrT  . The control 

system responses for 1K   and 0.5K   are shown 

in Figures 12 and 13. For 9MtrT   and 1K  , the 

plant response to a unit step reference is too sluggish 

(Fig. 14), while for 2MtrT   and 1K  , both the 

plant response and the controller response are 

excessively oscillatory (Fig. 15).  

    

 
      Figure 12. Control system responses to a unit step reference 

                           for 1K  , 4.4MK   and  4trMT  . 

     
     Figure 13. Control system responses to a unit step reference 

                            for 0.5K  , 4.4MK   and  4trMT  . 

 
       Figure 14. Control system responses to a unit step referencer 

                               for 1K  , 4.4MK   and  9trMT  . 
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    Figure 15. Control system responses to a unit step reference 

                           for 1K  , 4.4MK   and  2trMT  . 

Second algorithm. Good plant responses to a unit 

step reference are obtained for  4MtrT  .The control 

system responses for 1K   and  0.5K    are shown 

in Figures 16 and 17.  

   
     Figure 16. Control system responses to a unit step reference 

                          for 1K  , 4.4MK   and  4trMT  . 

                          

 
     Figure 17. Control system responses to a unit step reference 

                         for 0.5K  , 4.4MK   and  4trMT  . 

Third algorithm. Good plant responses to a unit step 

reference are obtained for 4MtrT  . The control 

system responses for 1K   and  0.5K    are shown 

in Figures 18 and 19.  

 
    Figure 18. Control system responses to a unit step reference 

                            for 1K  , 4.4MK   and  4trMT  . 

 
    Figure 19. Control system responses to a unit step reference 

                           for 0.5K  , 4.4MK   and  4trMT  . 

IV. CONCLUSIONS 

The structure of the studied practical IMC 

algorithms inserts a realizable inner controller of first 

or second order ( 1iC  and 2iC ) and a plant model of 

first or second order plus deadtime ( 1M  and 2M ), 

which can be easily obtained from the plant response 

to a step input. The three control algorithms are 

obtained by combining the inner controller type with 

the plant model type ( 1iC  and 1M  for the first 

algorithm, 1iC  and 2M  for the second algorithm, 

2iC  and 2M  for the third algorithm).  

All control algorithms have mainly four 

parameters: three model parameters (the model 

steady-state gain MK , the model deadtime M  and 

the transient time of the model response to a step 

input trMT ) and a tuning gain K  with standard value 

1 , which can be used by the human process operator 

to increase or decrease the magnitude of the control 

action. If 1K   and the plant model has a high 

accuracy, then the controller response to a step 

reference is close to a step form. Analysing the 

deviation of the controller response from the ideal 

step form, we can adjust online the model parameters 

to improve the model accuracy. 

Note that for all control algorithms, if no filter is on 

the reference signal, then the initial value  (0 )u   of 

the controller response ( )u t  to a unit step reference is 

equal to the ratio / MK K .       

The advantages and disadvantages of each of the 

three control algorithms were emphasized by 

comparing the dynamic performance of the closed 

loop control systems that incorporate the same 

controlled plant. The control performance of the first 

algorithm is relatively low, because the first order 

plus deadtime model 1M  is too simple to describe 

with sufficient accuracy the plant sluggishness. For 

any overdamped plant, the best control performance 

of the third algorithm is comparable with the best 

performance of the second algorithm. On the other 

hand, the second algorithm is simple than the third 

algorithm and the best performance of the second 

algorithm is obtained using a control action smoother 

than the one of the third algorithm. For this reason, 

the authors recommendation is to use the second 

algorithm for industrial control applications, which is 
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better than the classical PID algorithm due to its 

superior control performance and the simplicity of the 

controller tuning procedure.  

A contribution of the paper which emphasizes its 

practical feature consists in using the tuning gain K  

with standard value 1  instead of a tuning filter time 

constant as usual. Other main contribution is the 

extension of the studied algorithms to control 

proportional plants with overshoot.  

A further research direction might be the extension 

of the studied algorithms to control integral-type 

plants and unstable plants. A method to do this is to 

turn the original plant into a proportional-type plant 

by means of a feedback path of pure proportional-

type. 
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