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Abstract – In this paper a deterministic clustering 

method based on the Katsavounidis, Kuo & Zhang 

(KKZ) seed procedure, is proposed. The computational 

complexity of this approach is lower than the complexity 

of the prominent k-means algorithm. Comparison of our 

method with the related deterministic clustering method: 

KKZ_k-means (k-means initialized by KKZ) was done 

and performance evaluation demonstrates its 

effectiveness in term of average Silhouette index in 

various benchmark datasets. 
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I.  INTRODUCTION  

The clustering problem has many applications in 
Machine Learning, Pattern Recognition and Statistics. 
Clustering consists of grouping similar data into groups 
called clusters, so that the objects in the same cluster 
are more comparable to each other and more distinct 
from the objects in the other clusters [1]. This is an 
NP-hard optimization problem, even when the 
clustering process deals with only two clusters [2]. Till 
now, many heuristics have been proposed to tackle this 
problem in reasonable computational time. In the 
present study, yet another clustering approach which 
has the benefit of low computational complexity is 
suggested. 

This paper is organized as follows: after the 
introduction, we discuss briefly some related work. 
Then the proposed approach and its computational 
complexity are described in Section 3. In section 4, this 
clustering method is applied to some standard data sets 
and comparison with the related deterministic 
clustering method, KKZ_k-means (k-means initialized 
by KKZ) is done. Lastly, conclusion of the paper is 
done in Section 5. 

II. RELATED WORK 

Given a set of n data points (objects) X = {x1 , . . . , 
xn } in Rd and an integer k, the clustering problem 
consists to determine a partition (Cj)1 ≤ j ≤ k of X , in 
order to minimize the following Sum of Square Error 
(SSE) function: 

 

 
 

Where || . || 2 denotes the Euclidean norm, and k 

 
 

 

denotes the centroid of cluster Ci whose cardinality is 

|Ci|. 

Among the many existing clustering methods, the 

k-means algorithm [3][4] is the most commonly used 

clustering approach, because its simplicity. However, 

one of its major drawbacks is its sensitivity to initial 

seeds. Several methods have been proposed in the 

literature to overcome this issue, among them, the 

Katsavounidis, Kuo & Zhang (KKZ) seed procedure 

[5], (see Table 1 a)). This approach has a 

computational time complexity in O(knd). Another 

existing method is the FICA algorithm, proposed by 

Kettani & Ramdani in a previous work [6] (see Table I 

b)). Recently, Vo-Van et al.  have suggested a new 

clustering algorithm based on the definition of epsilon 

radius neighbors, that can automatically determine the 

number of clusters and can find clusters with different 

sizes, shapes, and densities [7]. However, this 

algorithm might run slowly on large datasets. In the 

present paper, an alternative approach to the k-means 

algorithm is proposed: Its initialization process consists 

to run the KKZ seed procedure, then its assigns each 

data point to its “nearest cluster”, using a criterion 

based on the following lemma which aims to minimize 

the SSE. 

 

TABLE I A): PSEUDO-CODE OF THE KKZ SEED PROCEDURE 

Input: A data set X with cardinality n and an integer k 

Output: k center cj 

 

 
 

 For j=2:k do 

        

  

cjxm 

  

 end For 
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TABLE I B): PSEUDO-CODE OF THE FICA ALGORITHM 

Input: A data set X with cardinality n and an integer k 

Output: k cluster Cj 

 

 
                                   

 For j=2:k do 

                                  
cjxm 

  

 end For 

 

  For i=1:n do 

      
      

     Cj  Cjxi 

      nj  |Cj| 

      cjmean(Cj)  

 

   end For 

 

Lemma [8]:                                                                                                   

Let a cluster Cj consist of p points xi , i = 1, . . . , p 

With a mean  

 

 
 

                                                                                                                                                    

Let the objective function be  

 

 
 

Then Op is increased by  

 

 
 

when a point xp+1 is added to cluster Cj  

 

Proof: 

xp +1 , the center of Cj xp+1 is at  

 
then 

 

 
which proves the lemma. 

III. PROPOSED APPROACH 

The pseudo-code of the proposed approach FCM 

(Fast Clustering Method) is shown below. Notice that 

it differs at the assignment loop from the FICA [6] 

code by the factor (nh /(1+nh)) suggested by the 

previous lemma. 

 

TABLE II: PSEUDO-CODE OF THE PROPOSED FCM APPROACH 

Input: A data set X with cardinality n and an integer k 

Output: k cluster Cj 

 

 

 
 

 For j=2:k do 

 

 
  

    cjxm 

  

  end For 

 

 For i=1:n do 

 

 
    

        Cj  Cjxi 

        nj  |Cj| 

        cjmean(Cj)  

 

  end For 

 

Complexity 

 

The running time of step 1 and 2 (which 

correspond to the KKZ procedure) is O(knd) [5], and 

the for loop in step 3 requires O(nkd) operations, so the 

overall running time complexity of FCM is O(nkd), 

which corresponds to the complexity of one iteration of 

the k-means algorithm. 

 

IV. EXPERIMENTAL RESULTS AND 

DISCUSSION 

We evaluated algorithm performance by applying 

on several benchmark datasets from the UCI Machine 

Learning Repository [9] and compare with KKZ_ k-

means. In a preprocessing step, the data were 

normalized. Silhouette index [10] was used in these 

experiments in order to evaluate clustering accuracy 

and experimental results are reported in Table III and 

Figure 1. 

Advantages of this proposed method are: it is 

deterministic and more performing than KKZ in term 

of average silhouette value. An inconvenient of this 

method is that is slightly more complex than FICA [6]. 
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TABLE III.  EXPERIMENTAL RESULTS OF KKZ_K-MEANS AND FCM 

APPLICATION ON DIFFERENT DATASETS IN TERM OF AVERAGE 

SILHOUETTE VALUE 

Data set k KKZ_k-means FCM 

Iris 3 0.7527 0.8142 

Ruspini 4 0.9081 0.9093 

Aggregation 7 0.6542 0.7745 

Compound 6 0.6496 0.7410 

Pathbased 3 0.7325 0.7025 

Spiral 3 0.5299 0.4449 

D31 31 0.5881 0.8786 

R15 15 0.5966 0.7664 

Jain 2 0.6720 0.9081 

Flame 2 0.5338 0.8775 

Dim32 16 0.7472 0.9961 

Dim64 16 0.9985 0.9984 

Dim128 16 0.9991 0.9991 

Dim256 16 0.9996 0.9996 

Dim512 16 0.9998 0.9998 

dim2 9 0.7816 0.9148 

dim3 9 0.3966 0.9340 

dim4 9 0.5849 0.9968 

dim5 9 0.4776 0.7830 

dim6 9 0.6308 0.9938 

dim7 9 0.5652 0.9553 

dim8 9 0.4604 0.9184 

dim9 9 0.4147 0.9260 

dim10 9 0.3738 0.8909 

dim11 9 0.4696 0.9281 

dim12 9 0.5059 0.9140 

dim13 9 0.8105 0.8717 

dim14 9 0.5487 0.9258 

dim15 9 0.7207 0.8918 

a1 20 0.5758 0.6384 

a2 35 0.5907 0.6366 

a3 50 0.5898 0.5936 

  

Figure 1.  Chart of average Silhouette index for FCM and KKZ_k-

means applied on different datasets 

 

 

 

CONCLUSION 

In this study, a fast clustering method was suggested.  

This approach is an alternative to the k-means 

algorithm for producing better clustering with less 

computational time and experimental results have 

showed that it is effective in finding consistent 

clustering results, when it is applied on various 

datasets. 
Future work will consist to compare this method to 

others existing clustering algorithms. A possible 
improvement will consist to consider a parallelization 
of this method, for faster clustering. 
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