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Abstract – With the evolution of renewable energy 

sources, such as wind and photovoltaic generators 

(PVGs), the present electric power systems will 

transform into systems, possessing various amounts of 

uncertainties. These systems will be dominated by an 

unparalleled combination of a variety of generation and 

power transmission technologies, accompanied by 

flexible load and storage devices, and possessing spatial 

and temporal uncertainties. In this regard, the 

significance of probabilistic transient stability cannot be 

overlooked. The inherent methods to determine power 

system transient stability, such as Lyapunov direct 

method (based on transient energy function), and time-

domain simulation method (based on numerical 

integration and algebraic-differential equations), have 

proven to be very computationally intensive. Novel soft 

computing techniques, such as machine learning and 

neural networks, provide promising results for tackling 

such kind of issues. Therefore, this paper aims to 

describe and discuss the framework for probabilistic 

transient stability in electric power systems and the 

application of artificial neural network to enhance its 

evaluation process. Various uncertain factors such as 

faulted line, fault type, fault location, and fault clearing 

time are incorporated in the analysis. Time-domain 

simulation, using DIgSILENT PowerFactory software, 

are used to obtain training data for the proposed neural 

network. The neural network toolbox of MATLAB is 

used to apply the proposed algorithm. Levenberg-

Marquardt backpropagation algorithm is used for 

training purpose. The approach of probabilistic 

transient stability is demonstrated using the standard 

IEEE 39-bus test system. The results obtained indicate 

the effectiveness of the proposed algorithm such that it 

can be applied to transient stability prediction of large-

scale practical power systems. Finally, a direction for 

future research in this growing area is identified.  
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I.  INTRODUCTION  

Since the early 20th century, power system 
stability has been documented as a significant issue in 
securing power system planning and operation [1-2]. 
Most blackouts caused by power system instability 
have demonstrated the significance of this 
phenomenon [3-4]. Traditionally, transient stability 
has been the leading stability issue in most power 

networks. However, with the introduction of novel 
technologies and increasing load demands, several 
kinds of instability have appeared. For instance, 
voltage stability, frequency stability and interarea 
oscillations have gained importance. This has 
necessitated an understanding of the basics of power 
system stability. A lucid concept of various kinds of 
instability is significant for the acceptable operation of 
power systems. Reference [5] has broadly classified 
power system stability into three major kinds: 
frequency, voltage, and rotor angle. This is pictorially 
shown in Figure 1. A brief description of these 
classifications follows. 

Frequency stability is the ability of a power system 
to maintain steady frequency after a severe system 
stress causes a substantial disparity between 
generation and load. It relies on the ability to maintain 
equilibrium between system generation and demand, 
with minimum inadvertent loss of load. 

 

Figure 1.  Classification of power system stability 

An example of this phenomenon is the forming of 
an undergenerated island with inadequate under 
frequency load shedding such that frequency declines 
swiftly resulting in an island blackout within a few 
seconds. Longer-term phenomena, with the period of 
interest ranging from tens of seconds to several 
minutes, include situations in which steam turbine 
overspeed controls cause frequency instability.  

Voltage stability is the ability of a power system to 
maintain steady voltages at all buses in the system, 
after being subjected to a disturbance from a given 
initial operating condition. The culprit for voltage 
instability is typically the loads. Large-disturbance 
voltage stability is the ability of a power system to 
maintain steady voltages after the occurrence of large 
disturbances, such as three-phase faults. The inherent 
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features of system and load are major determinants of 
this ability. The period of interest typically ranges 
from a few seconds to tens of minutes. Small-
disturbance voltage stability is the system’s ability to 
maintain steady voltages when small disturbances, 
such as steady changes in network load, take place.  

Rotor angle stability is the ability of synchronous 
machines in a power system to maintain synchronism 
when a disturbance is applied. Instability can result 
when the angular swing of generators causes a loss in 
synchronism. Small-signal rotor angle stability deals 
with stability under small disturbances, such as minor 
load variations. Large-disturbance rotor angle stability, 
or much more commonly called transient stability, 
focuses on the ability of the power system to maintain 
synchronism when a severe disturbance, such as a 
three-phase short circuit on a transmission line, is 
applied. The resulting system response constitutes 
large excursions of generator rotor angles and is 
affected by the nonlinear association between load 
angle and active power. The time range for transient 
stability studies is about 3 to 5 seconds after the 
disturbance has occurred.  

The focus of this paper is probabilistic transient 
stability in electric power systems. Traditionally, 
transient stability analysis has been conducted using a 
deterministic approach, such as equal area criterion, 
and a direct method using the Lyapunov function [6]. 
This method is normally founded on a worst-case 
scenario, for instance, a three-phase fault at the 
terminals of a generator. In real systems, this situation 
seldom occurs. Hereafter, the results attained are 
conservative which increases the cost. Also, the 
approach cannot determine the system deviation from 
the stability state. These inadequacies of the 
deterministic method drove research in favor of the 
probabilistic approach for analyzing the transient 
stability of an electric power system. The probabilistic 
approaches to transient stability of power systems 
were first assessed in [7-9]. These approaches utilized 
the conditional probability method to formulate a 
single stability index for any system fault. Reference 
[10] further enhanced the concept of probabilistic 
power system stability. This technique incorporated a 
compound analytic transformation. In [11], the joint 
probability distribution function for the critical 
clearing time (CCT) was computed. References [12-
14] have made some progress in stochastic modeling 
and have applied the bisection approach to decrease 
the computation time for CCT. The major 
shortcomings in these works is the use of conventional 
methods to assess transient stability. These methods 
may be suitable for offline (planning) phase as they 
are time-consuming, but are inappropriate for fulfilling 
the online (operational) requirements. Therefore, a 
faster method (based on artificial intelligence and 
neural network) can fulfil this significant requirement, 
and is the need of the hour. 

The remainder of this paper is organized as 
follows. Section II discusses the need for probabilistic 
transient stability in power systems. Section III 
discusses the framework for probabilistic transient 
stability in power systems, and the associated random 
variables involved. Section IV gives a brief 

background of artificial neural networks (ANNs). 
Section V demonstrates the application of probabilistic 
transient stability using simulations on the IEEE 39-
bus test system. Section VI presents the results and 
associated discussion. Finally, Section VII concludes 
the paper with recommended directions for future 
research. 

II. THE NEED FOR PROBABILISTIC TRANSIENT 

STABILITY IN POWER SYSTEMS 

Conventional power systems are gradually 
evolving in terms of operation, planning, and design 
criteria. The future power systems will be categorized 
by an extraordinary mix of a variety of energy sources, 
such as wind, photovoltaic generators (PVGs), tidal, 
and gas, and effective power transmission 
technologies, such as high-voltage direct current 
(HVDC) and flexible AC transmission system 
(FACTS) devices. These evolved power systems will 
possess the following features: (1) new structures for 
liberalized electricity markets; (2) novel generation 
and storage technologies, most of which interface with 
power electronics (PEs), including wind farms and 
grid-connected photovoltaic (PV) technologies, that 
are sporadic and stochastic in nature, and result in 
large operation uncertainty; (3) propagation of PE-
based efficient transmission technologies, and growing 
use of multimodal converters (MMC), and (4) novel 
kinds and diverse operational loads with better 
flexibility, including PE-interfaced loads and electric 
vehicles (EVs). One of the salient features of these 
systems is the upsurge in the level of uncertainties 
related to system modeling and operation. The main 
sources of uncertainties in a typical modern power 
system are: (1) network-based uncertainties, including 
network topology and settings of network elements, 
such as transformer tap settings and line parameters; 
(2) generation-based uncertainties including the output 
power uncertainty of PV and wind sources owing to 
forecasting errors; (3) load-based uncertainties, 
including uncertainty in load forecasting techniques 
and spatial variation in load, specifically the location 
of EVs; (4) uncertainties due to operating conditions, 
including the type, location, duration and impedance 
of a fault occurrence, and (5) weather-related 
uncertainties, including wind direction, wind velocity, 
solar irradiation, etc. [15]. 

A deterministic analysis of transient stability in a 
power system is based only on a specific case. It 
disregards the uncertainties in various system states 
and parameters as discussed above. Basically, 
deterministic analysis supposes that all system states 
are identified and do not vary over time. Traditionally, 
it has been conducted with a three-phase fault as this is 
the most severe example. This worst-case scenario 
gives conservative results and ignores the probability 
of events occurring. On the contrary, probabilistic 
transient stability considers the stochastic and 
probabilistic behavior of power system parameters. 
Thus, it can determine the risks for a given unforeseen 
event. Although, it was recognized that the 
deterministic approach does not accurately represent 
the system dynamic behavior, the framework for 
probabilistic transient stability has not been used 
extensively in recent times. Therefore, it is important 
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to describe the methodology for probabilistic transient 
stability, as it can enable an enhanced comprehension 
of the system behavior during transient events [15-16]. 

III. FRAMEWORK FOR PROBABILISTIC TRANSIENT 

STABILITY IN POWER SYSTEMS 

Conventional power system transient stability 
analyses have been deterministic. A specific procedure 
exists in which the system parameters, such as the 
fault type, fault location, fault clearing time (FCT), 
etc., are pre-selected, according to the worst-case 
scenario. Probabilistic studies, however, consider the 
stochastic features of the power system. Attention is 
given to the credibility and probability of a certain 
event happening. The framework for probabilistic 
transient stability in electric power systems is 
described in Figure 2 [16]. 

 

Figure 2.  Framework for probabilistic transient stability 

In the probabilistic approach, the procedure to 
include various system uncertainties is repeated many 
times. For instance, in deterministic transient stability, 
a specific network configuration is used, but for 
probabilistic analysis, a determination for forced 
transmission outages is required. In the next step, fault 
type, fault location and FCT are randomly chosen 
based on suitable probability distributions. Barely 
stable indicates a case where increasing the stability 
parameter above the threshold level will cause an 
unstable case [16]. 

Common distributions, which are used to model 
the probabilistic factors in transient stability, are 
outlined below [17-21]. 

A. Fault Type 

Generally, shunt faults, such as three-phase (LLL), 
double-line-to-ground (LLG), line-to-line (LL) and 
single-line-to-ground (LG) short circuits, are 
considered for evaluating probabilistic transient 
stability. A discrete distribution is normally used to 
model the fault type. Based on past system statistics, 
the common practice is to select the probability of 
LLL, LLG, LL and LG short circuits, as 0.05, 0.1, 
0.15, and 0.7 respectively [22].  

B. Fault Location 

The probability distribution of fault location on a 
line is usually assumed to be uniform or can be 
predicted from the actual fault statistics. This implies 
that a fault may occur with equal probability at any 
line of the power system and at any point (0-100%) 

along the line [20]. Let Pr( )locF denote the 

probability of fault location on a line. 
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where Nd =100. 

C. Fault Clearing Time  

The procedure for fault clearing is comprised of 
three stages: fault detection, relay operation and 
breaker operation. If the primary protection and 
breakers are fully reliable, only the clearing time is the 
uncertain factor. A normal (Gaussian) distribution is 
generally used to model this time [20]. Let 

( )Cf T denote the probability density function for 

clearing time, TC. 
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IV. ARTIFICIAL NEURAL NETWORKS 

An ANN normally consists of a set of connected 
nodes (known as artificial neurons), which replicate 
the features of the biological neurons [23]. Each 
neuron can communicate a signal to other neurons, 
which, in return, processes it. A simple diagram of 
feedforward neural network is shown in Figure 3. 

 

Figure 3.  Feedforward ANN 

ANN is usually used to predict the values for a set 
of new inputs, when the network is trained for existing 
data. To quantify the performance of the prediction, 
mean squared error (MSE) is usually used. 
Mathematically, it is given by 
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where N denotes total number of data points; fi and yi 
denote the predicted and actual value of output, 
respectively.  

Backpropagation algorithm is normally used to 
adjust weights and biases of neural network. This 

https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Neuron
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algorithm is perhaps the most central building block in 
a neural network. It was first introduced in 1960s, and 
almost 30 years later, it was disseminated by 
Rumelhart, Hinton and Williams. The algorithm is 
essentially used train a neural network through a 
technique called chain rule. In simple words, after 
each forward pass through a network, backpropagation 
performs a backward pass while adjusting the weights 
and biases of the model. The detailed discussion of the 
algorithm is beyond the scope of this paper. 

The activation function of the artificial neurons in 
ANNs implementing the backpropagation algorithm is 
a weighted sum (the sum of the inputs xi multiplied by 
their respective weights wji): 

0

( , )
n

j i ji

i

A x w x w
=

=             (4) 

As evident, the activation depends only on the 
inputs and the weights. If the output function would be 
the identity (i.e. output equals activation), the neuron 
would be called linear. The most common output 
function is the sigmoidal function: 
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The goal of the training process is to obtain a 
desired output when certain inputs are given. Since the 
error is the difference between the actual and the 
desired output, the error depends on the weights, and 
there is a need to adjust the weights to minimize the 
error. The error function for the output of each neuron 
can be defined as: 

2( , , ) ( ( , ) )j j jE x w d O x w d= −            (6) 

In the next step, the backpropagation algorithm 
computes how the error depends on the output, inputs, 
and weights. After determining this, the weights can 
be adjusted using the method of gradient descent: 

                       ji
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                          (7) 

Although, ANNs have been applied to transient 
stability assessment in [24-27], but most works neglect 
the stochastic dynamics and uncertainties of the power 
system. Hence, this works attempts to apply ANN to 
predict transient instability parameter, considering 
uncertainties. 

V. CASE STUDY AND SIMULATIONS 

To quantify the output for the probabilistic 
transient stability approach, researchers have proposed 
different indices. These indices include probability of 
instability of different lines [13], probability of system 
instability [18], and expected frequency of transient 
instability [8]. In recent years, the Transient Stability 
Index (TSI) has been used to assess system transient 
stability in the presence of conventional synchronous 
generators [22, 28-31]. This index uses maximum 
rotor angle separation between any two synchronous 
generators, after a fault has occurred. Mathematically, 
it is given as (8). 
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where -1<TSI<1     

The maximum rotor angle separation between any 
two synchronous generators in the system after a fault 

is represented by max . A negative value of TSI 

indicates that the system is unstable. The larger the TSI 
value, the greater the system stability. The same index 
is used in this section to demonstrate the application of 
probabilistic transient stability on a standard test 
power system. 

Let Ns denote the total Monte Carlo (MC) 
iterations for random sampling of distributions of 
faulted line, fault type, fault location, and FCT. 

Let Nu denote the number of iterations which cause 

instability (i.e., when max 360i  ). Let Nst denote 

number of iterations which cause stability (i.e., 

when max 360i  ). Thus, 

                     
s u stN N N= +             (9) 

Let PLG, PLL, PLLG, and PLLL denote the probability 
of instability for LG, LL, LLG, and LLL faults, 
respectively. Mathematically, 
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where 1uN , 2uN , 3uN , and 4uN  denote the number of 

unstable samples for LG, LL, LLG and LLL faults, 
respectively. 

Let PSYS denote the probability of system 
instability, i.e., 

    
u

SYS

s

N
P

N
=                                               (14)

                     

where Nu denotes the total unstable samples, 
irrespective of the fault type. 

The computation procedure is outlined in Figure 4. 
Symbol i denotes the iteration number of the MC 
simulation. The number of samples Ns selected for the 
MC simulation are limited to 1,000. This number has 
been established based on the observance of suitable 
convergence. Faulted line, fault type, fault location, 
and FCT are selected based on distributions described 
in Section III. For defining the FCT, Normal 
distribution, with various values of mean, is 
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considered (keeping the standard deviation constant). 
Thus, a random fault is placed at 1 s on a random line 
with a random point (0-100%) on the line. The fault is 
cleared based on the normal distribution of FCT. The 
process is repeated for Ns MC simulations. In the next 
step, values of PLG, PLL, PLLG, PLLL, and PSYS are 
determined for different values of FCT mean. In the 
last step, ANN model is trained to predict the value of 
PSYS, without conducting the computationally intensive 
time-domain simulation.  

The well-known IEEE 39-bus test transmission 
system was used to conduct the required simulations 
using DIgSILENT PowerFactory. The numerical data 
and parameters were taken from [32]. It was assumed 
that the analysis was conducted for the worst-case 
scenario, i.e., peak load. The system one-line diagram 
is shown in Figure 5.  

 

Figure 4.  Probabilistic transient stability application to IEEE 
39-bus system 

 

 

Figure 5.  IEEE 39-bus test system 

VI. RESULTS AND DISCUSSION 

The results for variation of PLG, PLL, PLLG, and PLLL 
with FCT mean are shown in Figure 6. As is evident, 
increasing the FCT mean, increased PLG, PLL, PLLG, 
and PLLL. Moreover, for all situations, PLLL was the 
highest and PLG was the lowest. This is because the 

LLL fault was the most severe. Moreover, the LG fault 
was the least severe. The same trend in fault severity 
was observed for all variations in FCT mean. After a 
certain FCT mean was achieved (1.4 s in this case), 
values of PLG, PLL, PLLG, and PLLL did not alter. This is 
because, in this instance, the FCT became greater than 
the CCT of the system, hence, the number of unstable 
samples for each fault remained unchanged after FCT 
mean equals 1.4 s.    

 

Figure 6.  Variation of PLG, PLL, PLLG, and PLLL with FCT mean 

 

It is important to observe the trend of PSYS with 
FCT mean. The trendline is displayed in Figure 7. As 
is evident, PSYS increased approximately linearly as 
FCT mean increased. The CCT was defined as the 
maximum time before which the fault must be cleared 
by the protection device to keep the system stable [18]. 
Thus, stability was only achieved if FCT was less than 
CCT. However, after a certain FCT mean (1.4 s), PSYS 
remained constant. This is because system CCT was 
less than FCT.   

 

Figure 7.  Variation of PSYS with FCT mean 

These results give the power system planner a 
good idea regarding selection of tripping times for 
circuit breakers. If slow breakers (having a larger FCT 
mean) are chosen, they obviously will expose the 
system to a greater risk of transient instability. 
Therefore, it is recommended that fast-operating 
circuit breakers be used to minimize the risk of system 
transient instability. Moreover, the impact of fault type 
is important to quantify the severity levels of different 
fault types. The location of fault on a line is vital. Fault 
near bus-ends of the line may prove more critical for 
the system than a fault at, say, middle of the line. 
Therefore, it is important to consider all probabilistic 
factors which can impact the assessment of transient 
stability in an electric power system. This analysis can 
be applied to a large-scale power system, and the 
results can be compared to analyze the transient 
stability performance of systems possessing diverse 
characteristics. These findings, regarding the 
significance of probabilistic methods in power 
systems, with increasing renewable generation 
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penetration and the rising unexpected events, are also 
highlighted by [33-45]. 

In the second part, an ANN was used to predict the 
value of PSYS. Application of ANN is significant in 
transient stability as time-domain simulation is very 
time-consuming, especially for large-scale power 
systems. The training data consisted of faulted line as 
inputs and value of PSYS as output. The neural network 
toolbox of MATLAB, a part of which is shown in 
Figure 8, was used to train and validate the 
performance of the prediction accuracy. Levenberg-
Marquardt algorithm was used for training purpose. 
The data division for training, validation and testing 
was chosen as 70%, 15%, and 15%, respectively. The 
results obtained are shown in Figure 9. As evident, the 
value of regression correlation coefficient, R, is very 
close to 1 in all phases (training, validation, testing). It 
means the trained model is very accurate in predicting 
values of PSYS. The x-axis represents the target (actual) 
values of PSYS, and the y-axis represents the predicted 
values of PSYS. The closer the value of R to 1, the 
greater is the prediction accuracy. The resulting error 
histogram is shown in Figure 10. Also, the depiction 
of best validation performance is shown in Figure 11.  

The results obtained by the proposed approach is 
comparable to the results presented by various 
research papers [46-48] in this field. Moreover, all 
these papers indicate the strong possibility of 
application of machine learning (including ANN) to 
online prediction of power system security. 

 

Figure 8.  MATLAB Neural Network toolbox 

 

Figure 9.  Regression plot (target vs predicted values) for 
prediction performance assessment 

 

 

Figure 10. Error histogram of PSYS 

 

 

Figure 11.  Best validation performance (at iteration 269) for 
PSYS  

VII. CONCLUSION AND FUTURE WORK 

This paper presented the framework for analyzing 
probabilistic transient stability in electric power 
systems. Various uncertain parameters involved were 
described. Moreover, the significance of the 
probabilistic approach was highlighted. A case study 
was conducted for the application of probabilistic 
transient stability on the IEEE 39-bus test system. 
ANN was applied to predict the instability probability, 
without having the need to solve the complex and 
time-consuming differential-algebraic equations of 
time-domain simulation approach. The main technical 
benefit of the proposed approach is that it gives faster 
prediction of transient stability status when compared 
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to conventional methods. Moreover, the economic 
benefit of the proposed approach is that it allows 
power system planners to make rapid decisions (based 
on neural network-based model transient stability 
status predictor). This, in turn, prevents equipment 
damage due to delayed decision-making, thereby 
providing a huge economic advantage. 

A possible extension of the application could be to 
consider various transient stability models of 
synchronous generation. The sources and levels of 
uncertainties are on the rise in electric power systems. 
Due to this, probabilistic transient stability will 
become indispensable in the future. The trade-off 
between modeling accuracy and computation burden 
is a developing research subject. Moreover, techniques 
need to be developed that can accurately model the 
correlation between various random system input 
variables. Other machine learning approaches, such as 
decision trees (DTs), random forests, and support 
vector machines (SVMs) can be applied for predicting 
probabilistic transient stability, and consequently, a 
performance comparison can be made with ANN.   
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