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Abstract – The first part of this paper is a brief review of 

reconfigurable computing in hardware security and 

focuses on devices designed with Field-Programmable 

Gate Arrays technology. The study is focused on 

reconfigurable computing with FPGAs versus ASICs, 

hardware security of FPGAs, and how all these are 

applied to hardware security devices under usual 

attacks. The second part presents the design of an 

application proposed to secure sensitive data and 

information. In comparison with other proposals, the 

main advantages and features of this application are: 

highly protected data on the SD card compared with  

software solutions because the device is designed only 

with hardware elements, transferring data speed is 

limited only by SD card specifications, and unique 

encrypt/decrypt PIN code restricts other users access to 

non-belonging files. The experimental results confirm 

the design considering the features mentioned.  

Keywords: reconfigurability, data security, FPGA, attack 

LCD, SD card, UART, encryption/decryption, device 

control, FSM. 

I. INTRODUCTION 

 
Personal information security and data security is a 

major problem for humanity since many years ago. All 
started with antique mechanisms and evolved to more 
and more ingenious electronic solutions.  

We live in a global connected world with easy to 
steal information where identity theft is a threat that 
people are not really aware of [1]. Therefore, new 
reliable security methods were necessary to keep up. 
An efficient solution to secure all these sensitive data 
is reconfigurable computing.  

Reconfigurable computing, the use of 
programmable logic to accelerate computation, arose 
in the late 80’s with the widespread commercial 
availability of Field-Programmable Gate Arrays 
(FPGAs) [2].  

In traditional computing there are two ways to 
execute different algorithms in order to achieve 
security: to use an Application Specific Integrated 
Circuit (ASIC), or to use microprocessors. The first 
solution is very fast and efficient but ASICs are 
designed to perform a given computation, and the chip 
cannot be modified after the fabrication process [3] 
[4]. The second solution is more flexible because the 
software instructions can be changed in order to 

modify the system functionality without changing the 
hardware. But there is a major inconvenient: 
performance. To complete these disadvantages 
between hardware and software we use reconfigurable 
computing [4].  

Field-Programmable Gate Arrays are digital 
integrated circuits (ICs) designed to be configured 
(programmed) to perform a vast variety of tasks [5]. 
FPGAs contain configurable logic blocks (CLBs) with 
configurable interconnects between these CLBs [6]. 
The FPGA term has a more historical connotation 
because these circuits are not only reconfigurable 
circuits, able to implement complex logic functions, as 
they were at the beginning. Today, in an FPGA chip 
we find RAM (Random Access Memory) memory 
blocks, hardware multipliers, and even DSP (Digital 
Signal Processing) cells based on combined MAC 
(Multiply Accumulate) operation.  

These advanced computational elements allow to 
transform FPGA in an extraordinary computation 
machine, and today, this industry is the most profitable 
among all electronic industries.  

According to [7], and [8], the main advantages of 
FPGA design are: faster time-to-market, simpler 
design cycle, field programmability, more predictable 
project cycle, and no upfront non-recurring expenses 
(NRE). When using ASIC design, the advantages are: 
full custom capability, smaller form factor, and lower 
unit costs. For a better understanding, let’s take a look 
at FPGA vs. ASIC design flow comparison [7] [8].  

Figure 1. FPGA vs. ASIC design flow comparison – caption [7]. 
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If we take a look at the process technology in 
fabricating FPGAs, and ASICs, we should see that 
over years FGPAs circuits are in significantly growing 
advantage versus ASICs circuits, as we can observe in 
the chart of Figure 2 [9]. 

Figure 2. Process technology - ASIC vs. FPGA – caption adapted 

from [9]. 

 

In order to configure the FPGA circuit, (in general) 
we use hardware description languages (HDL), such 
as VHDL (VHSIC HDL - Very High Speed Integrated 
Circuit Hardware Description Language), used to 
describe digital electronic systems [10] [11].  

Thus, the structure of this study is the following.: 
the first section is an introduction to reconfigurable 
computing, insisting on FPGAs versus ASICs, the 
second one refers to hardware security of FPGAs, the 
third section presents usual attacks, and how these are 
applied to hardware secured devices, the next two 
sections present an application proposed to secure 
sensitive data and information, including the results 
obtained, and the last section concludes the paper. 

II. HARDWARE SECURITY OF FPGAS  

 
To hardware secure a device designed using FPGA 

technology, we must take care of two aspects: device 
security, and data security. Device security means that 
the designer must protect the FPGA design, or device. 
Data security refers to the function configured into the 
circuit that must meet some critical security goals like 
data authenticity, or data integrity. If the device 
security doesn’t exist, it is very hard to implement 
performant data security. Therefore, these two aspects 
must coexist. [12] [13].  

FPGA device security is necessary to prevent some 
common actions that bad intended people can try to 
execute, depending on what they want to obtain, like: 

 Cloning – when someone manages to 
reproduce your design for sale. He can 
buy the components of the design, and he 
doesn’t care about the identical operations 
of your device, because these can be 
duplicated. As an example, for the SRAM 
based FPGA, this can be done by 
intercepting the configuration bitstream 
from the boot PROM [1] [14]. 

 Overbuilding – when someone like a 
manufacturer makes more copies of your 

device than you have ordered. These 
copies can be sold, and the profits will 
end at the manufacturer [1] [14]. 

 Reverse engineering – when someone 
manages to find out how your device 
operates, behave, and then uses, or even 
makes it better [1] [14].  

Figure 3, and Figure 4 shows the classic hardware 
security architecture for SRAM based FPGA, and 
Flash based FPGA. 

Figure 3. SRAM FPGA security architecture – caption adapted 

from [12]. 

 

Figure 4. Flash FPGA security architecture – caption adapted from 

[12]. 

 
In general, FPGA data security refers to security 

applications that can be designed, and implemented 
using FPGA technology, as those below: 

 Data encryption/decryption – a method of 

encoding information in a way that only 

authorized people/devices can read it. 

Over the last decades, a large variety of 

standards have been developed in order to 

ensure high information security. Some 

of these standards are: Triple-DES, AES 

(Advanced Encryption Standard), DES 

(Data Encryption Standard), RSA, 

OpenPGP, CipherSaber, IPsec, CAST, 
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RC4, and RC6. With this large variety of 

tandards, and the customized 

implementation possibilities for each 

standard, cryptography can be seen as 

one of the most versatile application 

domains of computer science. [15] 

 Authentication of hardware/software/people  
– authentication technologies are usually 

based on one of three things: something 

the individual knows, such as a password; 

something the individual has, such as a 

physical key, or secure token; and 

something the individual is, or does [16].  

 Enciphered data storage – refers to a 
cryptographic transformation that should 
prevent reversal transformation on a hard, 
or flash disk. One of the oldest ciphers 
used long time ago is Caesar’s cipher, 
consisting of a cipher text alphabet 
produced by a three positions to the left 
rotation of the source alphabet [17]. 

 Key management – is the control and 
management of all the cryptographic 
resources, and involves the devices that 
are used to generate, to distribute, and to 
load keys [18]. 

 Anti-reverse engineering – mechanisms 
implemented in the device used to cover 
some essential parts of the design in order 
to avoid this behavior.  

 Anti-tamper – tamper mechanisms are 
designed to prevent physical, or electronic 
action against the device, and they are 
divided into four groups: resistance, 
evidence, detection, and response [18] 
[19]. 

In order to be secured, a device must stay in a 
secure location with secured communications 
interfaces, and, if the location is unprotected to 
physical attacks, then the device will have to be 
tamper-resistant. 

III. SECURITY ATTACKS 

 
Simply for fun, or with bad intension, there are 

people, also known as hackers, who provide different 
purpose attacks, depending on what they want to 
achieve [14]. The level of importance to protect 
against these attacks is given by a simple fact: how 
sensitive the data stored in the attacked device is. In 
Figure 5, we can see the inverse relationship between 
the knowledge that attackers have, and growing 
sophistication of these attacks, from the beginning of 
1980 to 2010 [20].  

In the last years, the level of sophistication, and 
complexity of the attacks increased more and more, 
making more difficult to implement the defense 
against them, using the current algorithms. So, new 
defense algorithms must be proposed against hackers’ 
attacks. 

 

Figure 5. Growing attack sophistication versus decreasing intruder 

knowledge – caption adapted from [20]. 

 

According to IBM [21], hackers can be grouped in 

three categories: 

 

 Clever outsiders – they have access to poor 

and moderately attacking equipment, and 

they use system vulnerabilities rather 

than designing them [1].  

 Knowledgeable insiders – they have high 

technical experience, and highly 

sophisticated equipment to create attacks. 

 Funded organizations – groups of specialists 

capable of extreme advanced attacks with 

the latest analysis tools [1].  

 

Main types of technical attacks, depending on the 

analyzed parts of the device, are [22] [23] [24]: 

 

 Software attacks – man-in-middle, DoS 

(Denial of Service), eavesdropping, 

cryptographic attacks [25].  

 Side-channel attacks (passive) – timing 

analysis, SPA (Simple Power Analysis), 

DPA (Differential Power Analysis), and 

EME (Electromagnetic Emanations) [25]. 

 Active attacks – clock manipulation, 

temperature attacks, fault injection [26]. 

 Semi-invasive and invasive attacks – optical 

attacks, electron microscope, and focused 

ion beam [26]. 

 

If careful timing measurements are taken, 

attackers can find the secret key of the device, 

because some cryptographic operations require 

different time to complete. Therefore, as an example, 

the designers must accurately compute the CPU 

cycles when a password is compared, and make sure 

they are equal for both correct and incorrect 

passwords. Also, using SPA can directly reveal 

sensitive secrets of the cryptographic algorithms like 

session key, because this attack method refers to 

direct observation of the power consumption when 

cryptographic operations are computed. DPA is a 

more complex method because it uses statistical 

analysis to extract sensitive data from a large sample 

of power traces obtained during cryptographic 

computations with known cipher texts [14] [27]. 
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An attack example on a device based SRAM 

FPGA is cloning it when is programmed at a power-

up. The method involves simply connecting to the 

JTAG interfaces wires, and observes all the signals 

using logic analyzers. Then, these signals are 

analyzed, and the attacker can relay the commands in 

his personal device. He can also modify the bitstream 

in order to hide cloning [28].  

 

Another attack example, known as data 

remanence, is against SRAM memories, where 

security reconfigurable circuits store secret 

information like encryption keys. SRAM power 

disappears when the device is tampered, and below -

20C temperatures memory content can be ”frozen”. 

Usually, at these temperatures most circuits signalize 

tamper events. So, some useful information can be 

extracted from erased memories. In order to avoid this 

to happen, temperature detection circuits can be used, 

or prevent storing cryptographic data for a long time 

in SRAM [14]. 

Figure 6 reveals how side-channel attacks works. 

 
Figure 6. Side-channel attacks – caption adapted from [12]. 

 

There are devices that are including cryptography 

methods when designed. For those methods, U.S. 

government agencies must use FIPS (Federal 

Information Processing Standards) PUB 140-3 

validated cryptographic products with five possible 

security levels to receive validation [22]: 

 

 Security level 1 – specifies basic security 

requirements for a cryptographic module 

as specifications, approved algorithms, 

and approved modes of operation [29]. 

Security level 2 – improves level 1 by adding 

tamper evidence, and role-based or 

identity-based authentication [29].  

 Security level 3 – adds the following 

requirements: the input, or the output of 

CSP (critical security parameters), is 

separated using trusted channel from 

other ports and interfaces, the 

authentication is identity-based, tamper 

response and zeroization circuitry, 

protection against timing analysis attacks, 

and integrity tests [29]. 

 Security level 4 – improves level 3 with 

two-factor authentication, encryption, and 

decryption of CSP, integrity test code, 

protection against SPA (Simple Power 

Analysis) and DPA (Differential Power 

Analysis) attacks, and extended auditing 

requirements [29].  

 Security level 5 – provides the highest level 

of security by adding protection of PSP 

(Public Security Parameters) from EME 

(Electromagnetic Emanations) attacks, 

encryption and decryption of PSP, 

opaque to non-visual radiation 

examination, zeroization of PSP’s and 

protection from tamper detection, and 

zeroization circuitry disablement [29].  

 

 

IV. DESIGN OF APPLICATION 

 
In this section, the Hardware and Software design 

of device, used to store safe data on SD (Secure 
Digital) card, is shown. This device is designed using 
FPGA technology with ML507 development board 
built with FPGA Virtex 5 family. In order to provide 
a correct device functionality, the firmware I have 
implemented respects the following: 

 Device access and data access is made 
through a PIN (Personal Identification 
Number) code.  

 The SD card is used to store encrypted data, 
and also to read existing data. 

 An alphanumeric 2x16 LCD (Liquid Crystal 
Display) shows different messages when 
the device is in function. 

 Device – computer communication is UART 
(Universal Asynchronous Receiver/ 
Transmitter). 

 AES-128 (Advanced Encryption Standard) is 
the cryptographic algorithm for data 
encryption/decryption. 

 The authentication PIN code is stored in a 
SRAM (Static Random Access Memory). 

Data transfer is initiated through a software 
application, after correct PIN code authentication. 
Correct or incorrect PIN code is signalized on the 
LCD. After authentication, desired operation can be 
selected between storing and reading. If this is a store 
operation, then you must select the files that should be 
transferred. If this is a read operation, then you must 
select where to transfer the files.  

AES-128 is a standardized algorithm for block 
symmetric encryption, used today in many 
applications and secure devices. The key length for 
encryption/decryption is 128 bits, and it is generated 
based on an encrypt/decrypt PIN code. This code 
length is up to 16 characters, and there is a very 
important aspect: it is not stored. The user chooses it 
and introduces it into the software application. 

While the device is running, the display shows 
various messages in order to signalize its status:  

Input data
(ciphertext)

Cryptographic 
operation Output data

(plaintext)

Security boundary

 Main 
channel

Side-channel 
analysis Timing information

Power dissipation
Electromagnetic 

fields

 
Unintended 

 side 
channel
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 ”INCORRECT PIN”. 

”DEVICE CONNECTED”. 

”STORE FILES”. 

”READ FILES”. 

 ”ENCRYPTING FILES”.  
 

The entire assembly is controlled with a general 
module. This module provides synchronicity for 
components, correct device functionality, and 
signaling. 

Figure 7 shows the device block diagram, and a 
theoretical view of how the device should look. 

 

Figure 7. Device block diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In the following, I will show how the main 

modules where designed and implemented in VHDL, 
using Xilinx ISE Design Suite. 

A. FPGA - LCD communication 

The LCD is used to show different messages, 
when the device is running. It was necessary to 
implement the communication LCD controller 
instruction set (Table 1).  

The display works in 4-bit mode, but to send 
instructions or to WR/RD (write/read) information, 
the DB7, DB6, DB5, and DB4 pins are used. These 
four pins form a data bus. RS (Register Select) pin 
controls write/read information, or instructions mode: 

 ”0” – LCD instructions mode. 

 ”1” – WR/RD data mode. [40] 

 

RW pin controls read/write operation: 

 ”0” – write operation. 

 ”1” – read operation. [40] 

 

 

 

 

 

 

 

 
 

 

Table 1. LCD instruction set - caption [40]. 

 

 
 

E (Enable) pin points the start of WR/RD 
operation, when enabled (”1”) [40].  

Before showing information, the display must be 
initialized using instruction set in Table 1. In Figure 
8, the initialization flow chart is shown [40]. 

Figure 8. LCD initialization flow chart - caption [40]. 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After initialization ends, write/read operation can 
start. For this to happen, timing diagrams and 
corresponding times must be observed, as shown in 
Figure 9, Figure 10, Table 2, and Table 3 [40]. 
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Figure 9. Timing diagram for write operation – caption [40]. 

 
Figure 10. Timing diagram for read operation – caption [40]. 

 

Table 2. Write operation (timing values) – caption [40]. 

 

 

 
Table 3. Read operation (time values) – caption [40]. 

 

 
 

According to previous information, in Figure 11 I 

designed the block diagram of FPGA - LCD 

communication, which was also implemented in 

VHDL [30] [31] [32] [33]. 

 
Figure 11. FPGA – LCD communication block diagram. 

 

The Data_in signal, from SEND_TO_LCD block, 
is 256 bits in length, because the display has 32 
characters (32 characters * 8 bits/character = 256 
bits).  

Messages displayed on LCD are stored inside the 
FPGA circuit in a block RAM, and, within the block 
diagram, as shown in Figure 11, all 32 characters can 
be display at a time.  

In the SEND TO LCD block, the LCD is 
initialized, and input data is transferred nibble by 
nibble to the LCD CONTROLLER block, respecting 
timing diagrams.  

The block RAM is 32x256 organized, and Figure 
12 shows its block diagram [30] [31]. 

Figure 12. RAM 32x256 block diagram. 

Figure 13 reveals the memory map. Unused areas 

can be used in future device improvements. 

 
Figure 13. RAM 32x256 map. 

 

B. FPGA - SD card communication 

The SD card is used to store encrypted data. 

Because ML507 development board does not support 

SD card connector, I connected one at the XGI 

expansion pins, as shown in Figure 14 [39]. 
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Figure 14. SD card connection to ML507 – caption [39]. 

 

The SD card communication is realized in two 

modes: SD mode, and SPI (Serial Peripheral 

Interface) mode. The default mode is SD, but for this 

application I used SPI mode which runs using a 

master/slave set-up, and it can work in full duplex 

mode. Figure 15 illustrates SPI communication 

method [37]. 

 
Figure 15. SPI communication method – caption [37].  

 

Communication with SD card is realized by 

sending and receiving commands. Commands are 48 

bits in length (Figure 16), and responses are 8 bits in 

length, with two exceptions of where 40 bits 

responses are received (Figure 17 and Figure 18) [37]. 

 
Figure 16. 48 bits command – caption [37]. 

 

 
Figure 17. 8 bits response – caption [37]. 

 
 

 

 

 

Figure 18. 40 bits response) – caption [37]. 

 

In Table 4 we can see the commands set for SPI 

mode. 
Table 4. SPI commands set – caption [37]. 

 

 
 

Before using it to store data, the SD card needs to 

be initialized, as shown in Figure 19, and then, data 

transfer can start, as shown in Figure 20 [37]. The 

card also supports single and multiple block reading, 

and also single and multiple block writing. 

 
Figure 19. SPI mode initialization flow chart – caption [37]. 
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Figure 20. Data transfer – caption [37]. 

 

 

According to previous information, Figure 21 

shows the block diagram design of the FPGA – SD 

card communication, also implemented in VHDL [30] 

[31] [32] [33]. 

 
Figure 21. FPGA – SD card communication block diagram. 

 

C. FPGA - UART communication 

I/O serial transfer is done through a single wire for 

each direction. UART communication is 

asynchronous because clock signal is not transmitted. 

The receiver recognizes individual binary values 

without common clock line. UART interface involves 

two parts [30] [31]: 

 

 Receiver (RX) – converts serial bit flow to 

parallel data. 

 Transmitter (TX) – converts parallel data to 

serial bit flow. 

 
An important problem, in serial transmission, is 

data reconstruction as it gets to the receiver. Both the 
transmitter and the receiver must work at the same 
frequency, and logic is necessary to exist on phase 
detection (for transmitted data), and for synchronizing 
the receiver clock. Therefore, one start bit and one or 
two stop bits are used when the transmission begins. 
The receiver synchronizes the clock after the start bit, 
and then starts sampling data bits. If stop bits are not 
received, the receiver thinks its clock is dephased, and 
frame error is declared [32] [33]. 

Figure 22 shows the functional UART diagram, 
and in Figure 23 UART frame is explained. 

 

 

 

 

 

Figure 22. UART functional diagram – caption [42]. 

 

 
Figure 23. UART frame format – caption [41]. 

 

 

According to previous information and theory, in 

Figure 24 I designed the block diagram for FPGA – 

UART communication which was also implemented 

in VHDL. In UART CONTROLLER block the 

following are implemented: RX clock generator, TX 

clock generator, RX FSM (Finite State Machine), TX 

FSM and data memory registers. TX/RX UART block 

is used to declare data for transmission/reception. The 

messages that appear on UART application are 

written inside FPGA chip in a RAM block with a 

1kx8 organization. 

 
Figure 24. FPGA – UART communication block diagram. 

 

D. AES-128 

AES-128 represents a standardized algorithm for 

block symmetric encryption that can process data 

blocks of 128 bits length using key cipher of 128, 192 

or 256 bits length. In this application, for the key 

cipher I used a 128 bits length. The encryption 

process transforms the information into an 

unintelligible form, called cipher text. Cipher text 

decryption transforms this new information into 

original information, called plain text. Figure 25 

shows the steps of the encryption process, and Figure 

26 shows the operations of the decryption process 

[34] [35] [36]. 
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Figure 25. AES-128 encryption process – caption [35]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. AES-128 decryption process – caption [35]. 

 

As it can be observed in Figure 25 and Figure 26, 

each process consists of different transformations 

applied to data blocks, in a fix number of iterations, 

called rounds. This number depends on key length. In 

this case, we have a number of 10 rounds. For each, a 

round key is generated by the key expansion process. 

Each step of the encryption process is presented in 

Figure 27, Figure 28, Figure 29, and Figure 30. In 

Figure 31, the key expansion process is illustrated. 

For decryption is the same thing, but backwards [34] 

[35] [36] [38]. 

 
Figure 27. Sub Bytes step – caption [35]. 

 
 

 

 

 

 

 

 

Figure 28. Shift Rows step – caption [35]. 

 

 

 

 

 

 

 

Figure 29. Mix Columns step – caption [35]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30. Add Round Key step – hardware implementation – 

caption [35]. 

 

 
 

 

 

 

 
 

Figure 31. Key expansion process – caption [35]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The next image, in Figure 32, shows a block 

diagram of how the AES-128 encryption algorithm 

should be implemented.  
 

Figure 32. AES-128 encryption process – caption [35]. 

 

After all these, the VHDL implementation of the 

AES-128 data encryption block diagram is performed 

(Figure 33). 
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Figure 33. AES-128 implemented block diagram (data encryption). 

E. FPGA – SRAM communication 

After the device is connected, on the UART 
application the authentication PIN code is requested, 
and it is compared with the one stored in the SRAM. If 
they are the same, write/read operation can start. 
Otherwise, the PIN code is again requested, and, after 
3 fails, the device blocks for 30 seconds.  

The SRAM controller block diagram is illustrated 

in Figure 34 [30] [32]. 

 

 
Figure 34. SRAM controller block diagram. 

F. Device control – main FSM (Finite State 

Machine) 

 
The main flow chart for implementing this 

hardware device is shown in Figure 35. Based on this 
flow chart, the full ensemble works as it was designed. 
The state where the device is at particular time is 
signalized on the display synchronized with the 
performing operations, noticeable on UART 
application. When the device starts, the device name is 
displayed. In UART application, the device name 
appears, and, after 2 seconds, a message says to press 
”ENTER” key from the keyboard, in order to 
continue. After the key is pressed, the PIN code is 
necessary, and it is up to 16 characters in length. When 
the code is inserted instead of each character, the 
symbol “*” appears because of safety reasons. If the 
PIN code is shorter than 16 characters, the rest is 
automatically completed with “*”. After “ENTER” is 
pressed, the code is compared with the one in the 
SRAM. If they are not the same, the PIN can be 
inserted again. After 3 fails, the device blocks for 30 
seconds to prevent brute force or other attacks to break 
the algorithm, and, then it comes back to initial 
settings. If the two codes correspond, write/read 

operation can start on/from SD card. For write 
operation, a cipher PIN code is requested. This code is 
unique depending on the user and it is used in the 
encryption process. Then, the files are selected, and, 
while they are transferred on SD card, they are also 
encrypted. For reading operation, the decryption PIN 
code is requested and it must be the same with the 
cipher PIN code when the files were written. After 3 
fails, the device blocks for 60 seconds to prevent brute 
force. If the introduced code is the same, then the 
decryption process starts. 

Figure 35. Main flow chart. 

For the messages displayed on the UART 
application, an FSM (Figure 36) [30] [31] is 
implemented, consisting of individual message 
modules. These modules are controlled with two 
signals: “start” and “ready”. Also, in this FSM there 
are signals that control others components (LCD, 
SRAM, AES-128, SD card) in the same way through 
smaller modules, in order to perform a correct and 
synchronous functionality. 

Figure 36. Device FSM. 
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V. RESULTS 

In this section, the results after the device is 

designed using captures with the software application, 

and a photo with the device in use are shown. The 

software application is used through PuTTY terminal.  

As it can be seen, the device is designed according 

to Figure 35, and Figure 36. To start transferring data, 

the PIN code is required. A message is visible on the 

UART terminal, and on the display, depending on the 

inserted PIN code. When this is correct, the user must 

select the operation mode, and, then, the 

encrypt/decrypt code is required depending on the 

chosen operation. After the operation end, and the 

data are encrypted or decrypted, the user can select to 

start again other operation or to exit. 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

VI. STATE OF THE ART 

 According to [43], in present there are 865 

hardware and software products incorporating 

encryption from 55 different countries. Two-thirds of 

the total are outside the US, with 56% available for 

sale and 44% free. The main types of these encryption 

products are: file encryption, message encryption, 

mail encryption, disk encryption, cloud encryption, 

telephone, network, browser, VPN, USB, and VoIP.  

Safexs Guardian XT and Safexs Protector XT, 

designed by Safexs from Sweden, are commercial 

secure flash drives used to secure sensitive data from 

unauthorized access. The main features of these 

products are: brute force protection, tamperproof, 

anti-tampering, password policy, updatable, computer 

protection, auto-destruct, strong metal alloy, and fast 

data transfer. However, the data transfer is limited by 

USB protocol. 

 Both products use AES-256 hardware encryption 

algorithm, but unique encrypt/decrypt PIN code used 

in encryption/decryption process, as in this study, is 

missing.  

VII. CONCLUSION 

The aim of this study was to briefly review 
reconfigurable computing benefits in hardware 
security and different types of attacks that can be 
performed in order to penetrate secured devices. The 
application area have been expanded thanks to FPGA-
based architectures.  
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The usefulness of reconfigurability can be seen on 
the previously presented device. Because the device is 
designed only with hardware elements, the data stored 
on the SD card is highly protected compared with a 
software solution. Transferring data speed is limited 
only by SD card specifications.  

The session key for encryption/decryption 
algorithm is temporarily generated, and by using 
different PIN codes, two or more users can store 
encrypted files. The unique encrypt/decrypt PIN code 
restricts other users access to non-belonging files. This 
PIN code can be extended to alphanumeric code. As a 
result the security level is enhanced. 

The device that was designed to safely store data 
on SD card is a prototype that can be built as a mobile 
one. 

Thus, the rigidity of hardware systems eliminates 
the possibility of external actions increasing the 
security level compared with software 
implementations. 
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