
Journal of Electrical Engineering, Electronics, Control and Computer Science

JEEECCS, Volume 2, Issue 3, pages 1-12, 2016

Reconfigurable computing in hardware security
 A brief review and application

Fernando Georgel Bîrleanu

Faculty of Electronics, Communications and

Computers

University of Pitesti

Pitesti, Romania

birleanu.fernando@gmail.com

Nicu Bizon
Faculty of Electronics, Communications and

Computers

University of Pitesti

Pitesti, Romania

Abstract – The first part of this paper is a brief review of

reconfigurable computing in hardware security and

focuses on devices designed with Field-Programmable

Gate Arrays technology. The study is focused on

reconfigurable computing with FPGAs versus ASICs,

hardware security of FPGAs, and how all these are

applied to hardware security devices under usual

attacks. The second part presents the design of an

application proposed to secure sensitive data and

information. In comparison with other proposals, the

main advantages and features of this application are:

highly protected data on the SD card compared with

software solutions because the device is designed only

with hardware elements, transferring data speed is

limited only by SD card specifications, and unique

encrypt/decrypt PIN code restricts other users access to

non-belonging files. The experimental results confirm

the design considering the features mentioned.

Keywords: reconfigurability, data security, FPGA, attack

LCD, SD card, UART, encryption/decryption, device

control, FSM.

I. INTRODUCTION

Personal information security and data security is a

major problem for humanity since many years ago. All
started with antique mechanisms and evolved to more
and more ingenious electronic solutions.

We live in a global connected world with easy to
steal information where identity theft is a threat that
people are not really aware of [1]. Therefore, new
reliable security methods were necessary to keep up.
An efficient solution to secure all these sensitive data
is reconfigurable computing.

Reconfigurable computing, the use of
programmable logic to accelerate computation, arose
in the late 80’s with the widespread commercial
availability of Field-Programmable Gate Arrays
(FPGAs) [2].

In traditional computing there are two ways to
execute different algorithms in order to achieve
security: to use an Application Specific Integrated
Circuit (ASIC), or to use microprocessors. The first
solution is very fast and efficient but ASICs are
designed to perform a given computation, and the chip
cannot be modified after the fabrication process [3]
[4]. The second solution is more flexible because the
software instructions can be changed in order to

modify the system functionality without changing the
hardware. But there is a major inconvenient:
performance. To complete these disadvantages
between hardware and software we use reconfigurable
computing [4].

Field-Programmable Gate Arrays are digital
integrated circuits (ICs) designed to be configured
(programmed) to perform a vast variety of tasks [5].
FPGAs contain configurable logic blocks (CLBs) with
configurable interconnects between these CLBs [6].
The FPGA term has a more historical connotation
because these circuits are not only reconfigurable
circuits, able to implement complex logic functions, as
they were at the beginning. Today, in an FPGA chip
we find RAM (Random Access Memory) memory
blocks, hardware multipliers, and even DSP (Digital
Signal Processing) cells based on combined MAC
(Multiply Accumulate) operation.

These advanced computational elements allow to
transform FPGA in an extraordinary computation
machine, and today, this industry is the most profitable
among all electronic industries.

According to [7], and [8], the main advantages of
FPGA design are: faster time-to-market, simpler
design cycle, field programmability, more predictable
project cycle, and no upfront non-recurring expenses
(NRE). When using ASIC design, the advantages are:
full custom capability, smaller form factor, and lower
unit costs. For a better understanding, let’s take a look
at FPGA vs. ASIC design flow comparison [7] [8].

Figure 1. FPGA vs. ASIC design flow comparison – caption [7].

Fernando Georgel Birleanu, Nicu Bizon 2

If we take a look at the process technology in
fabricating FPGAs, and ASICs, we should see that
over years FGPAs circuits are in significantly growing
advantage versus ASICs circuits, as we can observe in
the chart of Figure 2 [9].

Figure 2. Process technology - ASIC vs. FPGA – caption adapted

from [9].

In order to configure the FPGA circuit, (in general)
we use hardware description languages (HDL), such
as VHDL (VHSIC HDL - Very High Speed Integrated
Circuit Hardware Description Language), used to
describe digital electronic systems [10] [11].

Thus, the structure of this study is the following.:
the first section is an introduction to reconfigurable
computing, insisting on FPGAs versus ASICs, the
second one refers to hardware security of FPGAs, the
third section presents usual attacks, and how these are
applied to hardware secured devices, the next two
sections present an application proposed to secure
sensitive data and information, including the results
obtained, and the last section concludes the paper.

II. HARDWARE SECURITY OF FPGAS

To hardware secure a device designed using FPGA

technology, we must take care of two aspects: device
security, and data security. Device security means that
the designer must protect the FPGA design, or device.
Data security refers to the function configured into the
circuit that must meet some critical security goals like
data authenticity, or data integrity. If the device
security doesn’t exist, it is very hard to implement
performant data security. Therefore, these two aspects
must coexist. [12] [13].

FPGA device security is necessary to prevent some
common actions that bad intended people can try to
execute, depending on what they want to obtain, like:

 Cloning – when someone manages to
reproduce your design for sale. He can
buy the components of the design, and he
doesn’t care about the identical operations
of your device, because these can be
duplicated. As an example, for the SRAM
based FPGA, this can be done by
intercepting the configuration bitstream
from the boot PROM [1] [14].

 Overbuilding – when someone like a
manufacturer makes more copies of your

device than you have ordered. These
copies can be sold, and the profits will
end at the manufacturer [1] [14].

 Reverse engineering – when someone
manages to find out how your device
operates, behave, and then uses, or even
makes it better [1] [14].

Figure 3, and Figure 4 shows the classic hardware
security architecture for SRAM based FPGA, and
Flash based FPGA.

Figure 3. SRAM FPGA security architecture – caption adapted

from [12].

Figure 4. Flash FPGA security architecture – caption adapted from

[12].

In general, FPGA data security refers to security

applications that can be designed, and implemented
using FPGA technology, as those below:

 Data encryption/decryption – a method of

encoding information in a way that only

authorized people/devices can read it.

Over the last decades, a large variety of

standards have been developed in order to

ensure high information security. Some

of these standards are: Triple-DES, AES

(Advanced Encryption Standard), DES

(Data Encryption Standard), RSA,

OpenPGP, CipherSaber, IPsec, CAST,

SRAM FPGA Configuration

Flash PROM
(external)

AES decryption

CRC

AES KEY

AES key

Security lock-
bit(s)

OTP (anti-fuse)

SRAM

Flash

Logic

Flash

LogicFlash FPGA Configuration
(Flash ROM, eNVM)

128-bit AES key

Security lock-bits

128-bit FlashLock
Passcode

Match?

Flash Security Segment

Strong message
authentication

128-bit AES
decryption

JTAG input

Y/N

Programming
disabled

Plaintext
bitstream

Decrypted
bitstream

AES encrypted
bitsream

Reconfigurable computing in hardware security – A brief review and application

3

RC4, and RC6. With this large variety of

tandards, and the customized

implementation possibilities for each

standard, cryptography can be seen as

one of the most versatile application

domains of computer science. [15]

 Authentication of hardware/software/people
– authentication technologies are usually

based on one of three things: something

the individual knows, such as a password;

something the individual has, such as a

physical key, or secure token; and

something the individual is, or does [16].

 Enciphered data storage – refers to a
cryptographic transformation that should
prevent reversal transformation on a hard,
or flash disk. One of the oldest ciphers
used long time ago is Caesar’s cipher,
consisting of a cipher text alphabet
produced by a three positions to the left
rotation of the source alphabet [17].

 Key management – is the control and
management of all the cryptographic
resources, and involves the devices that
are used to generate, to distribute, and to
load keys [18].

 Anti-reverse engineering – mechanisms
implemented in the device used to cover
some essential parts of the design in order
to avoid this behavior.

 Anti-tamper – tamper mechanisms are
designed to prevent physical, or electronic
action against the device, and they are
divided into four groups: resistance,
evidence, detection, and response [18]
[19].

In order to be secured, a device must stay in a
secure location with secured communications
interfaces, and, if the location is unprotected to
physical attacks, then the device will have to be
tamper-resistant.

III. SECURITY ATTACKS

Simply for fun, or with bad intension, there are

people, also known as hackers, who provide different
purpose attacks, depending on what they want to
achieve [14]. The level of importance to protect
against these attacks is given by a simple fact: how
sensitive the data stored in the attacked device is. In
Figure 5, we can see the inverse relationship between
the knowledge that attackers have, and growing
sophistication of these attacks, from the beginning of
1980 to 2010 [20].

In the last years, the level of sophistication, and
complexity of the attacks increased more and more,
making more difficult to implement the defense
against them, using the current algorithms. So, new
defense algorithms must be proposed against hackers’
attacks.

Figure 5. Growing attack sophistication versus decreasing intruder

knowledge – caption adapted from [20].

According to IBM [21], hackers can be grouped in

three categories:

 Clever outsiders – they have access to poor

and moderately attacking equipment, and

they use system vulnerabilities rather

than designing them [1].

 Knowledgeable insiders – they have high

technical experience, and highly

sophisticated equipment to create attacks.

 Funded organizations – groups of specialists

capable of extreme advanced attacks with

the latest analysis tools [1].

Main types of technical attacks, depending on the

analyzed parts of the device, are [22] [23] [24]:

 Software attacks – man-in-middle, DoS

(Denial of Service), eavesdropping,

cryptographic attacks [25].

 Side-channel attacks (passive) – timing

analysis, SPA (Simple Power Analysis),

DPA (Differential Power Analysis), and

EME (Electromagnetic Emanations) [25].

 Active attacks – clock manipulation,

temperature attacks, fault injection [26].

 Semi-invasive and invasive attacks – optical

attacks, electron microscope, and focused

ion beam [26].

If careful timing measurements are taken,

attackers can find the secret key of the device,

because some cryptographic operations require

different time to complete. Therefore, as an example,

the designers must accurately compute the CPU

cycles when a password is compared, and make sure

they are equal for both correct and incorrect

passwords. Also, using SPA can directly reveal

sensitive secrets of the cryptographic algorithms like

session key, because this attack method refers to

direct observation of the power consumption when

cryptographic operations are computed. DPA is a

more complex method because it uses statistical

analysis to extract sensitive data from a large sample

of power traces obtained during cryptographic

computations with known cipher texts [14] [27].

Fernando Georgel Birleanu, Nicu Bizon 4

An attack example on a device based SRAM

FPGA is cloning it when is programmed at a power-

up. The method involves simply connecting to the

JTAG interfaces wires, and observes all the signals

using logic analyzers. Then, these signals are

analyzed, and the attacker can relay the commands in

his personal device. He can also modify the bitstream

in order to hide cloning [28].

Another attack example, known as data

remanence, is against SRAM memories, where

security reconfigurable circuits store secret

information like encryption keys. SRAM power

disappears when the device is tampered, and below -

20C temperatures memory content can be ”frozen”.

Usually, at these temperatures most circuits signalize

tamper events. So, some useful information can be

extracted from erased memories. In order to avoid this

to happen, temperature detection circuits can be used,

or prevent storing cryptographic data for a long time

in SRAM [14].

Figure 6 reveals how side-channel attacks works.

Figure 6. Side-channel attacks – caption adapted from [12].

There are devices that are including cryptography

methods when designed. For those methods, U.S.

government agencies must use FIPS (Federal

Information Processing Standards) PUB 140-3

validated cryptographic products with five possible

security levels to receive validation [22]:

 Security level 1 – specifies basic security

requirements for a cryptographic module

as specifications, approved algorithms,

and approved modes of operation [29].

Security level 2 – improves level 1 by adding

tamper evidence, and role-based or

identity-based authentication [29].

 Security level 3 – adds the following

requirements: the input, or the output of

CSP (critical security parameters), is

separated using trusted channel from

other ports and interfaces, the

authentication is identity-based, tamper

response and zeroization circuitry,

protection against timing analysis attacks,

and integrity tests [29].

 Security level 4 – improves level 3 with

two-factor authentication, encryption, and

decryption of CSP, integrity test code,

protection against SPA (Simple Power

Analysis) and DPA (Differential Power

Analysis) attacks, and extended auditing

requirements [29].

 Security level 5 – provides the highest level

of security by adding protection of PSP

(Public Security Parameters) from EME

(Electromagnetic Emanations) attacks,

encryption and decryption of PSP,

opaque to non-visual radiation

examination, zeroization of PSP’s and

protection from tamper detection, and

zeroization circuitry disablement [29].

IV. DESIGN OF APPLICATION

In this section, the Hardware and Software design

of device, used to store safe data on SD (Secure
Digital) card, is shown. This device is designed using
FPGA technology with ML507 development board
built with FPGA Virtex 5 family. In order to provide
a correct device functionality, the firmware I have
implemented respects the following:

 Device access and data access is made
through a PIN (Personal Identification
Number) code.

 The SD card is used to store encrypted data,
and also to read existing data.

 An alphanumeric 2x16 LCD (Liquid Crystal
Display) shows different messages when
the device is in function.

 Device – computer communication is UART
(Universal Asynchronous Receiver/
Transmitter).

 AES-128 (Advanced Encryption Standard) is
the cryptographic algorithm for data
encryption/decryption.

 The authentication PIN code is stored in a
SRAM (Static Random Access Memory).

Data transfer is initiated through a software
application, after correct PIN code authentication.
Correct or incorrect PIN code is signalized on the
LCD. After authentication, desired operation can be
selected between storing and reading. If this is a store
operation, then you must select the files that should be
transferred. If this is a read operation, then you must
select where to transfer the files.

AES-128 is a standardized algorithm for block
symmetric encryption, used today in many
applications and secure devices. The key length for
encryption/decryption is 128 bits, and it is generated
based on an encrypt/decrypt PIN code. This code
length is up to 16 characters, and there is a very
important aspect: it is not stored. The user chooses it
and introduces it into the software application.

While the device is running, the display shows
various messages in order to signalize its status:

Input data
(ciphertext)

Cryptographic
operation Output data

(plaintext)

Security boundary

 Main
channel

Side-channel
analysis Timing information

Power dissipation
Electromagnetic

fields

Unintended

 side
channel

Reconfigurable computing in hardware security – A brief review and application

5

 ”INCORRECT PIN”.

”DEVICE CONNECTED”.

”STORE FILES”.

”READ FILES”.

 ”ENCRYPTING FILES”.

The entire assembly is controlled with a general
module. This module provides synchronicity for
components, correct device functionality, and
signaling.

Figure 7 shows the device block diagram, and a
theoretical view of how the device should look.

Figure 7. Device block diagram.

In the following, I will show how the main

modules where designed and implemented in VHDL,
using Xilinx ISE Design Suite.

A. FPGA - LCD communication

The LCD is used to show different messages,
when the device is running. It was necessary to
implement the communication LCD controller
instruction set (Table 1).

The display works in 4-bit mode, but to send
instructions or to WR/RD (write/read) information,
the DB7, DB6, DB5, and DB4 pins are used. These
four pins form a data bus. RS (Register Select) pin
controls write/read information, or instructions mode:

 ”0” – LCD instructions mode.

 ”1” – WR/RD data mode. [40]

RW pin controls read/write operation:

 ”0” – write operation.

 ”1” – read operation. [40]

Table 1. LCD instruction set - caption [40].

E (Enable) pin points the start of WR/RD
operation, when enabled (”1”) [40].

Before showing information, the display must be
initialized using instruction set in Table 1. In Figure
8, the initialization flow chart is shown [40].

Figure 8. LCD initialization flow chart - caption [40].

After initialization ends, write/read operation can
start. For this to happen, timing diagrams and
corresponding times must be observed, as shown in
Figure 9, Figure 10, Table 2, and Table 3 [40].

FPGA

VIRTEX-5

USB

(UART)

SD CARD

POWER

SUPPLY

16x2

CHARACTER LCD

PC

SRAM

Fernando Georgel Birleanu, Nicu Bizon 6

Figure 9. Timing diagram for write operation – caption [40].

Figure 10. Timing diagram for read operation – caption [40].

Table 2. Write operation (timing values) – caption [40].

Table 3. Read operation (time values) – caption [40].

According to previous information, in Figure 11 I

designed the block diagram of FPGA - LCD

communication, which was also implemented in

VHDL [30] [31] [32] [33].

Figure 11. FPGA – LCD communication block diagram.

The Data_in signal, from SEND_TO_LCD block,
is 256 bits in length, because the display has 32
characters (32 characters * 8 bits/character = 256
bits).

Messages displayed on LCD are stored inside the
FPGA circuit in a block RAM, and, within the block
diagram, as shown in Figure 11, all 32 characters can
be display at a time.

In the SEND TO LCD block, the LCD is
initialized, and input data is transferred nibble by
nibble to the LCD CONTROLLER block, respecting
timing diagrams.

The block RAM is 32x256 organized, and Figure
12 shows its block diagram [30] [31].

Figure 12. RAM 32x256 block diagram.

Figure 13 reveals the memory map. Unused areas

can be used in future device improvements.

Figure 13. RAM 32x256 map.

B. FPGA - SD card communication

The SD card is used to store encrypted data.

Because ML507 development board does not support

SD card connector, I connected one at the XGI

expansion pins, as shown in Figure 14 [39].

SEND TO LCD LCD CONTROLLER

clock

reset

LCD_RS

LCD_RW

LCD_E

LCD_DATA

} TO LCD

4

data_out data_in

rs rs

rw rw

4

start start

busy busy

4

256

data_in

RAM32x256

clock

wr_data

wr_addr

wr_en

rd_data

rd_addr

256

5

5

256

UNUSED AREA

OPERATION ERROR

OPERATION SUCCEEDED

ENTER DECRYPT PIN

ENTER ENCRYPT P IN

DECRYPTING FILES

ENCRYPTING FILES

TRANSFER FILES PC - SD CARD

TRANSFER FILES SD CARD - PC

INCORRECT PIN CODE

CORRECT PIN CODE

ENTER PIN CODE

DEVICE CONNECTED

INFORMATIVE MESSAGES AREA

08h

09h

00h

0Ah

0Bh

0Ch

0Dh

0Eh

0Fh

10h

11h

12h

13h

14h

1Fh

Reconfigurable computing in hardware security – A brief review and application

7

Figure 14. SD card connection to ML507 – caption [39].

The SD card communication is realized in two

modes: SD mode, and SPI (Serial Peripheral

Interface) mode. The default mode is SD, but for this

application I used SPI mode which runs using a

master/slave set-up, and it can work in full duplex

mode. Figure 15 illustrates SPI communication

method [37].

Figure 15. SPI communication method – caption [37].

Communication with SD card is realized by

sending and receiving commands. Commands are 48

bits in length (Figure 16), and responses are 8 bits in

length, with two exceptions of where 40 bits

responses are received (Figure 17 and Figure 18) [37].

Figure 16. 48 bits command – caption [37].

Figure 17. 8 bits response – caption [37].

Figure 18. 40 bits response) – caption [37].

In Table 4 we can see the commands set for SPI

mode.
Table 4. SPI commands set – caption [37].

Before using it to store data, the SD card needs to

be initialized, as shown in Figure 19, and then, data

transfer can start, as shown in Figure 20 [37]. The

card also supports single and multiple block reading,

and also single and multiple block writing.

Figure 19. SPI mode initialization flow chart – caption [37].

Fernando Georgel Birleanu, Nicu Bizon 8

SD CARD CONTROLLER

clock

reset

data_in

data_mode_in

data_out

wr

8
8

rd

miso

cs

mosi

sclk

Figure 20. Data transfer – caption [37].

According to previous information, Figure 21

shows the block diagram design of the FPGA – SD

card communication, also implemented in VHDL [30]

[31] [32] [33].

Figure 21. FPGA – SD card communication block diagram.

C. FPGA - UART communication

I/O serial transfer is done through a single wire for

each direction. UART communication is

asynchronous because clock signal is not transmitted.

The receiver recognizes individual binary values

without common clock line. UART interface involves

two parts [30] [31]:

 Receiver (RX) – converts serial bit flow to

parallel data.

 Transmitter (TX) – converts parallel data to

serial bit flow.

An important problem, in serial transmission, is

data reconstruction as it gets to the receiver. Both the
transmitter and the receiver must work at the same
frequency, and logic is necessary to exist on phase
detection (for transmitted data), and for synchronizing
the receiver clock. Therefore, one start bit and one or
two stop bits are used when the transmission begins.
The receiver synchronizes the clock after the start bit,
and then starts sampling data bits. If stop bits are not
received, the receiver thinks its clock is dephased, and
frame error is declared [32] [33].

Figure 22 shows the functional UART diagram,
and in Figure 23 UART frame is explained.

Figure 22. UART functional diagram – caption [42].

Figure 23. UART frame format – caption [41].

According to previous information and theory, in

Figure 24 I designed the block diagram for FPGA –

UART communication which was also implemented

in VHDL. In UART CONTROLLER block the

following are implemented: RX clock generator, TX

clock generator, RX FSM (Finite State Machine), TX

FSM and data memory registers. TX/RX UART block

is used to declare data for transmission/reception. The

messages that appear on UART application are

written inside FPGA chip in a RAM block with a

1kx8 organization.

Figure 24. FPGA – UART communication block diagram.

D. AES-128

AES-128 represents a standardized algorithm for

block symmetric encryption that can process data

blocks of 128 bits length using key cipher of 128, 192

or 256 bits length. In this application, for the key

cipher I used a 128 bits length. The encryption

process transforms the information into an

unintelligible form, called cipher text. Cipher text

decryption transforms this new information into

original information, called plain text. Figure 25

shows the steps of the encryption process, and Figure

26 shows the operations of the decryption process

[34] [35] [36].

TX/RX UART UART CONTROLLER

clock

reset

RX

TX} TO
UART

tx_data

tx_data_enable

tx_chn_ready

rx_data

rx_data_enable

8

8

Reconfigurable computing in hardware security – A brief review and application

9

Figure 25. AES-128 encryption process – caption [35].

Figure 26. AES-128 decryption process – caption [35].

As it can be observed in Figure 25 and Figure 26,

each process consists of different transformations

applied to data blocks, in a fix number of iterations,

called rounds. This number depends on key length. In

this case, we have a number of 10 rounds. For each, a

round key is generated by the key expansion process.

Each step of the encryption process is presented in

Figure 27, Figure 28, Figure 29, and Figure 30. In

Figure 31, the key expansion process is illustrated.

For decryption is the same thing, but backwards [34]

[35] [36] [38].

Figure 27. Sub Bytes step – caption [35].

Figure 28. Shift Rows step – caption [35].

Figure 29. Mix Columns step – caption [35].

Figure 30. Add Round Key step – hardware implementation –

caption [35].

Figure 31. Key expansion process – caption [35].

The next image, in Figure 32, shows a block

diagram of how the AES-128 encryption algorithm

should be implemented.

Figure 32. AES-128 encryption process – caption [35].

After all these, the VHDL implementation of the

AES-128 data encryption block diagram is performed

(Figure 33).

Fernando Georgel Birleanu, Nicu Bizon 10

Figure 33. AES-128 implemented block diagram (data encryption).

E. FPGA – SRAM communication

After the device is connected, on the UART
application the authentication PIN code is requested,
and it is compared with the one stored in the SRAM. If
they are the same, write/read operation can start.
Otherwise, the PIN code is again requested, and, after
3 fails, the device blocks for 30 seconds.

The SRAM controller block diagram is illustrated

in Figure 34 [30] [32].

Figure 34. SRAM controller block diagram.

F. Device control – main FSM (Finite State

Machine)

The main flow chart for implementing this

hardware device is shown in Figure 35. Based on this
flow chart, the full ensemble works as it was designed.
The state where the device is at particular time is
signalized on the display synchronized with the
performing operations, noticeable on UART
application. When the device starts, the device name is
displayed. In UART application, the device name
appears, and, after 2 seconds, a message says to press
”ENTER” key from the keyboard, in order to
continue. After the key is pressed, the PIN code is
necessary, and it is up to 16 characters in length. When
the code is inserted instead of each character, the
symbol “*” appears because of safety reasons. If the
PIN code is shorter than 16 characters, the rest is
automatically completed with “*”. After “ENTER” is
pressed, the code is compared with the one in the
SRAM. If they are not the same, the PIN can be
inserted again. After 3 fails, the device blocks for 30
seconds to prevent brute force or other attacks to break
the algorithm, and, then it comes back to initial
settings. If the two codes correspond, write/read

operation can start on/from SD card. For write
operation, a cipher PIN code is requested. This code is
unique depending on the user and it is used in the
encryption process. Then, the files are selected, and,
while they are transferred on SD card, they are also
encrypted. For reading operation, the decryption PIN
code is requested and it must be the same with the
cipher PIN code when the files were written. After 3
fails, the device blocks for 60 seconds to prevent brute
force. If the introduced code is the same, then the
decryption process starts.

Figure 35. Main flow chart.

For the messages displayed on the UART
application, an FSM (Figure 36) [30] [31] is
implemented, consisting of individual message
modules. These modules are controlled with two
signals: “start” and “ready”. Also, in this FSM there
are signals that control others components (LCD,
SRAM, AES-128, SD card) in the same way through
smaller modules, in order to perform a correct and
synchronous functionality.

Figure 36. Device FSM.

SubBytes ShiftRows

clock

reset

SubBytes_OUT
128

128

MixColumnsAddRoundKey

ExpandKey

SubBytes_IN

ShiftRows_IN

DATA_OUTDATA_INPLAINTEX
T_IN

KEY_IN

PAR_KEY
KEY_IN

KEY_128

LOAD_KEY
KEY_LOAD

ShiftRows_OUT

MixColumns_
IN

128

MixColumns_
OUT

CIPHERTEXT
_OUT

128128

128

128

INIT 200 ms

POWER- UP

RD / RW?

ENTER PIN

CODE

ENTER

DECRYPT PIN

CODE

RD RW

CORRECT

PIN CODE?

CORRECT

PIN CODE?

DATA

PC - FPGA

YES

START

ENCRYPTION

STOP

ENCRYPTION

DATA

FPGA – SD

CARD

STOP

DATA

SD CARD -

FPGA

START

DECRYPTION

STOP

DECRYPTION

DATA

FPGA - PC

STOP

NO

ENTER

ENCRYPT PIN

CODE

YES

INC

CONTOR1

COUNTER1

= 3?

WAIT

30 SEC

YES

NO

INC

COUNTER2

COUNTER2

= 3?

WAIT

60 SEC

YES

NO

NO

FSM DEVICE
CONTROL

CONTROL

SHOW
THESIS
NAME

clock

reset

SHOW PRESS
”ENTER”

SHOW ENTER
PIN CODE

CHECK
PIN CODE

SHOW
CORRECT/

INCORRECT
PIN CODE

CHOOSE
WRITE/READ

SD CARD

CHECK
WRITE/READ

OPTION

SHOW
ENCRYPTING/

DECRYPTING FILES

SHOW
OPERATION
SUCCEEDED

SHOW
OPERATION

ERROR

SHOW WAIT
60/120

SECONDS

CHECK
DECRYPT
PIN CODE

SHOW ENTER
DECRYPT
PIN CODE

SHOW ENTER
ENCRYPT
PIN CODE

LCD SRAM AES-128 SD CARD

start

ready

start

ready

start

ready

start

ready

start

ready

start

ready

start

ready

ready

start

ready

start

ready

start

ready

start

ready

start

ready

start

ready

start

SRAM1kx8 CONTROLLER

clock

reset

data_in

addr

data_out

we

8

8

rd SRAM_DATA

busy

SRAM_ADDR

8

SRAM_CE

10

SRAM_WE

SRAM_OE

LOW_BATT
LOW_BATT_STATUS

Reconfigurable computing in hardware security – A brief review and application

11

V. RESULTS

In this section, the results after the device is

designed using captures with the software application,

and a photo with the device in use are shown. The

software application is used through PuTTY terminal.

As it can be seen, the device is designed according

to Figure 35, and Figure 36. To start transferring data,

the PIN code is required. A message is visible on the

UART terminal, and on the display, depending on the

inserted PIN code. When this is correct, the user must

select the operation mode, and, then, the

encrypt/decrypt code is required depending on the

chosen operation. After the operation end, and the

data are encrypted or decrypted, the user can select to

start again other operation or to exit.

VI. STATE OF THE ART

 According to [43], in present there are 865

hardware and software products incorporating

encryption from 55 different countries. Two-thirds of

the total are outside the US, with 56% available for

sale and 44% free. The main types of these encryption

products are: file encryption, message encryption,

mail encryption, disk encryption, cloud encryption,

telephone, network, browser, VPN, USB, and VoIP.

Safexs Guardian XT and Safexs Protector XT,

designed by Safexs from Sweden, are commercial

secure flash drives used to secure sensitive data from

unauthorized access. The main features of these

products are: brute force protection, tamperproof,

anti-tampering, password policy, updatable, computer

protection, auto-destruct, strong metal alloy, and fast

data transfer. However, the data transfer is limited by

USB protocol.

 Both products use AES-256 hardware encryption

algorithm, but unique encrypt/decrypt PIN code used

in encryption/decryption process, as in this study, is

missing.

VII. CONCLUSION

The aim of this study was to briefly review
reconfigurable computing benefits in hardware
security and different types of attacks that can be
performed in order to penetrate secured devices. The
application area have been expanded thanks to FPGA-
based architectures.

Fernando Georgel Birleanu, Nicu Bizon 12

The usefulness of reconfigurability can be seen on
the previously presented device. Because the device is
designed only with hardware elements, the data stored
on the SD card is highly protected compared with a
software solution. Transferring data speed is limited
only by SD card specifications.

The session key for encryption/decryption
algorithm is temporarily generated, and by using
different PIN codes, two or more users can store
encrypted files. The unique encrypt/decrypt PIN code
restricts other users access to non-belonging files. This
PIN code can be extended to alphanumeric code. As a
result the security level is enhanced.

The device that was designed to safely store data
on SD card is a prototype that can be built as a mobile
one.

Thus, the rigidity of hardware systems eliminates
the possibility of external actions increasing the
security level compared with software
implementations.

REFERENCES

[1] B. Badrignans, J. L. Danger, V. Fischer, G. Gogniat and L.

Torres, “Security Trends for FPGAs – From Secured to

Secure Reconfigurable Systems, Springer, Dordrecht, 2011,

pp. 1 – 21.

[2] M. Gokhale and P. S. Graham, “Reconfigurable Computing –

Accelerating Computation with Field-Programmable Gate

Arrays”, Springer, Dordrecht, 2005, pp. 1.

[3] K. Compton, S. Hauck, “Configurable Computing: A Survey

of Systems and Software”, Northwestern University, Dept. of

ECE Technical Report, 1999.

[4] K. Compton, S. Hauck, “An Introduction to Reconfigurable

Computing”, Motorola.

[5] C. Maxfiled, “The Design Warrior’s Guide to FPGAs –

Devices, Tools, and Flows”, Elsevier, Burlington, 2004, pp.

1 - 8.

[6] D. Chen, J. Cong and P. Pan, “FPGA Design Automation: A

Survey, Foundations and Trends in Electronic Design

Automation, vol. 1, no 3, pp. 195 – 330, November 2006.

[7] http://www.xilinx.com/fpga/asic.htm

[8] http://asic-soc.blogspot.ro/2007/11/what-is-difference-

between-fpga-and_06.html

[9] http://www.rtcmagazine.com/articles/view/102503

[10] P. Simpson, “FPGA Design – Best Practices for Team-based

Design”, Springer, New York, 2010.

[11] P. J. Ashender, “The VHDL Cookbook – First Edition”, July,

1990.

[12] https://www.escrypt.com/fileadmin/escrypt/pdf/Hardware_Se

curity_for_FPGAs_using_Cryptography_Microsemi_Huette

mann.pdf

[13] D. Denning, “Cryptography and data security”, Reading MA:

Addison-Wesley, 1983.

[14] M. Tehranipoor, C. Wang, “Introduction to Hardware

Security and Trust”, Springer, New York, 2012.

[15] C. Bobda, “Introduction to Reconfigurable Computing –

Architectures, algorithms and applications”, Springer,

Dordrecht, 2007.

[16] National Research Council, “Biometric Recognition –

Challenges and opportunities”, The National Academies

Press, USA, 2010.

[17] N. A. Moldovyan, A. A. Moldovyan, “Data-driven block

ciphers for fast telecommunication systems”, Auerbach

Publications, New York, 2008.

[18] M. Mogollon, “Cryptography and security services”,

Cybertech Publishing, USA and UK, 2007, pp. 110, 457.

[19] http://www.xilinx.com/products/technology/design-

security.html

[20] P. Gregory, “CISSP guide to security essentials”, Course

Technology, Cengage Learning, Boston, 2010.

[21] D.G. Abraham, G. M. Dolan, G. P. Double, J. V. Stevens,

“Transaction Security System”, IBM System Journal , Vol.

30(2). 1991, pp. 206-229.

[22] S. P. Skorobogatov, “Semi-invasive attacks – A new

approach to hardware security analysis”, University of

Cambridge, 2005.

[23] K.S. Wills, T. Lewis, G. Billus, H. Hoang, “Optical Beam

Induced Current Applications for Failure Analysis of VLSI

Devices”, Proceedings International Symposium for Testing

and Failure Analysis, 1990, p. 21.

[24] T. Huffmire, C. Irvine, T. D. Nguyen, T. Levin, R. Kastner,

T. Sherwood, “Handbook of FPGA Design Security”,

Springer, Dordrecht, 2010.

[25] S. H. Weingart, “Physical Security Devices for Computer

Subsystems: A Survey of Attacks and Defenses”, Workshop

on Cryptographic Hardware and Embedded Systems (CHES

2000), LNCS, Vol. 1965, Springer-Verlag, 2000, pp. 302–

317.

[26] J. Kelsey, B. Schneier, D. Wagner, C.s Hall, “Side Channel

Cryptanalysis of Product Ciphers”, Journal of Computer

Security, Vol. 8(2–3), 2000, pp. 141–158.

[27] A. R. Sadeghi, D. Naccache, “Towards Hardware-Intrisec

Security – Foundations and Practice”, Springer, New York,

2010.

[28] Lattice Semiconductor Corporation, “White paper – FPGA

Design Security Issues: Using the ispXPGA Family of

FPGAs to Achieve High Design Security”, Oregon, 2003.

[29] http://csrc.nist.gov/groups/ST/FIPS140_3/documents/FIPS_1

40-3%20Final_Draft_2007.pdf

[30] P. P. Chu, “FPGA prototyping by VHDL examples”, Wiley,

New Jersey, 2008.

[31] V. A. Pedroni, “Circuit Design with VHDL”, MIT Press,

Cambridge - London, 2004.

[32] S. Ramachandran, “Digital VLSI Systems Design – A Design

Manual for Implementation of Projects on FPGAs and

ASICs using Verilog”, Springer, Dordrecht, 2007.

[33] V. A. Chandrasetty, “VLSI Design – A Practical Guide for

FPGA and ASIC Implementations”, Springer, Dordrecht,

2011.

[34] A. Kiayias, S. Pehlivanoglu, “Encryption for Digital

Content”, Springer, New York, 2010.

[35] J. Daemen, V. Rijmen, “The Design of Rijndael”, Springer,

Berlin, 2002.

[36] C. Cid, S. Murphy, M. Robshaw, “Algebraic Aspects of the

Advanced Encryption Standard”, Springer, USA, 2006.

[37] www.dejazzer.com/ee379/lecture_notes/lec12_sd_card.pdf

[38] http://aes.online-domain-tools.com/

[39] http://www.xilinx.com/support/documentation/boards_and_ki

ts/ug347.pdf

[40] https://www.sparkfun.com/datasheets/LCD/HD44780.pdf

[41] https://electricimp.com/docs/resources/uart/

[42] J. Catsoulis, “Designing Embedded Hardware”, O’Reilly,

Sebastopol, 2003.

[43] http://www.wired.com/wp-content/uploads/2016/02/A-

Worldwide-Survey-of-Encryption-Products.pdf

http://www.xilinx.com/fpga/asic.htm
http://asic-soc.blogspot.ro/2007/11/what-is-difference-between-fpga-and_06.html
http://asic-soc.blogspot.ro/2007/11/what-is-difference-between-fpga-and_06.html
http://www.rtcmagazine.com/articles/view/102503
https://www.escrypt.com/fileadmin/escrypt/pdf/Hardware_Security_for_FPGAs_using_Cryptography_Microsemi_Huettemann.pdf
https://www.escrypt.com/fileadmin/escrypt/pdf/Hardware_Security_for_FPGAs_using_Cryptography_Microsemi_Huettemann.pdf
https://www.escrypt.com/fileadmin/escrypt/pdf/Hardware_Security_for_FPGAs_using_Cryptography_Microsemi_Huettemann.pdf
http://www.xilinx.com/products/technology/design-security.ht%20ml
http://www.xilinx.com/products/technology/design-security.ht%20ml
http://csrc.nist.gov/groups/ST/FIPS140_3/documents/FIPS_140-3%20Final_Draft_2007.pdf
http://csrc.nist.gov/groups/ST/FIPS140_3/documents/FIPS_140-3%20Final_Draft_2007.pdf
http://www.dejazzer.com/ee379/lecture_notes/lec12_sd_card.pdf
http://aes.online-domain-tools.com/
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug347.pdf
https://electricimp.com/docs/resources/uart/
http://www.wired.com/wp-content/uploads/2016/02/A-Worldwide-Survey-of-Encryption-Products.pdf
http://www.wired.com/wp-content/uploads/2016/02/A-Worldwide-Survey-of-Encryption-Products.pdf

