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Abstract–Presence of renewable sources of energy in 

power systems is vital to cope the negative impacts of 

environmental climate change. The drift in autonomous 

power network situations offers a strong possibility of 

wind generation to become one of the key contributors in 

sustainable energy. This paper presents a methodology 

for determining the optimal location of a wind farm in a 

power transmission network based on security 

assessment. The optimization problem is devised with an 

objective of minimizing mean system operating cost, 

considering both (N-1) line and (N-1) bus outages. 

Moreover, machine learning algorithm is applied to 

predict the optimal wind farm location in a 

computationally efficient manner. The IEEE 39-bus test 

system is used to test and validate the effectiveness of the 

proposed approach. DIgSILENT PowerFactory and 

MATLAB were utilized for optimal power flow 

simulations and machine learning prediction algorithm, 

respectively. The results give a unique solution for 

optimal location of wind generation, along with a priority 

order list, which is useful when integrating multiple wind 

farms in the power transmission system. 

Keywords-Climate change; machine learning; optimal 

power flow; power system security; wind generation 

I.  INTRODUCTION  

Due to the rising demand for energy and the need 
for sustainable energy, the use of renewable energy, 
particularly wind power, is increasing [1-3]. To 
decrease harmful carbon dioxide emissions, and to 
expand the generation range for attaining the goal of 
power supply security, numerous nations have lately 
vowed to attain concise future aims, associated with the 
electric power consumption, using renewable sources 
of energy [4-5]. Thus, it is important to replace the 
conventional thermal generators in the system with 
wind generators. For this purpose, the optimal network 
location for wind generation needs to be determined. To 
attain the goals of renewable energy in an economical 
way, it is essential to optimally utilize the current 
transmission capacity, even if this necessitates the 
production of wind power in areas with relatively less 
attractive wind resources. Many techniques have been 
suggested to simplify the process of determining 
optimal wind farm locations [6]. Most of the associated 
research is based on the objective of maximization of 
the profit of investors [7]. However, the main drawback 
is that this research neglects the wind farm integration 
effects. Consequently, some studies suggest approaches 
for wind power integration, based on the requirements 

of the power grid, such as loss reduction, and voltage 
regulation [8-9]. However, those theoretical integration 
strategies may not be established, as the anticipated 
wind farm locations do not certainly entice investors. In 
[10], the optimal placement is made using reducing 
short-term variability in power output, while 
capitalizing power output. In [11], transmission 
security constraints and unit commitment are 
incorporated in the problem preparation that fulfils an 
anticipated wind energy infiltration level while 
minimizing capital cost.  

Diverse optimization algorithms are discussed in 
the literature to attain optimal size and location of 
renewable energy sources, such as PV (photovoltaic) 
generators and wind farms. A combination of Chu-
Beasly Genetic Algorithm (CBGA) and particle swarm 
optimization (PSO) algorithm is applied to optimally 
locate wind, PV, and small-scale hydro generation [12]. 
The PSO algorithm has relatively lower performance 
for finding the global optimum. In case of CBGA, 
designing an objective function and getting the 
representation and operators right can be 
difficult. Moreover, it is computationally expensive i.e., 
time-consuming. A constrained discrete PSO technique 
is suggested in [13] to determine optimal sites and sizes 
of PV, wind turbines, and capacitor banks. References 
[12-13] considered a constant output of the renewable 
energy system (RES). In [14], optimal location of PV is 
determined by using PSO for loss reduction. Reference 
[15] proposed a planning process to classify the optimal 
locations and parameters of distributed units of storage 
with wind farms to decrease network bottlenecks.  

Reference [16] suggested an analytical method for 
determining the size of solar PV and battery. The 
analytical method, in general, lacks robustness, can 
only consider single objective and single solar farm at a 
time. Reference [17] proposed the optimization of the 
substation location of a wind farm using metaheuristic 
algorithms. In [18], the PSO algorithm was used to 
optimize the location and size of wind farm. Reference 
[19] presented a linear programming-based 
optimization procedure to find the optimal positions to 
connect wind farms to attain anticipated renewable 
energy. It is not simple to determine the objective 
function mathematically in a linear programming 
problem. Also, it is difficult to specify the constraints 
even after the determination of the objective function. 

Reference [20] applied the gradient-based 
optimization and numerical smoothing to discover 
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optimal wind farm location and size. The reader can 
refer to [21-22] for a detailed description of various 
optimization methods applied in power systems. 
Although, these classical conventional approaches are 
simple to comprehend, and easy to implement, 
however, these algorithms can prove to be very 
complex when applied to large-scale systems and can 
be very time-consuming (this is the challenging issue 
which needs to be addressed). Also, they have very poor 
convergence and cannot be applied to optimization of 
more than one objective. Therefore, soft computing 
methods are required to overcome these shortcomings. 
These approaches offer various advantages over the 
conventional classical approaches. For instance, they 
need much fewer iterations to compute the global 
minima (or maxima), and can easily handle complex 
objective function, incorporating multiple generation 
sources of a large-sized practical power system. 
Although, machine learning has been applied for 
solving optimal power flow (OPF) problem in [23-26]; 
but to the best of author’s knowledge, it has not been 
used to determine the optimal location of a wind farm 
in a transmission system. Thus, in this paper, firstly, the 
nonlinear optimization is performed using an iterative 
interior-point algorithm, and consequently, supervised 
machine learning is applied to reduce the computation 
efforts of the nonlinear OPF problem. 

Power system security is the ability of the network 
to survive unexpected disturbances, such as short-
circuit faults or unforeseen loss of network 
components. Security also considers system operating 
conditions and probability of disturbances [27-29]. 
Security assessment is further separated into two types: 
static (steady state) and dynamic (transient) security 
assessment [29]. The goal of the former is to determine 
whether, following the occurrence of a disturbance, 
there is a new steady-state operating point. On the other 
hand, dynamic security assessment deals with the 
ability of the power system to reach a stable point, when 
a severe transient disturbance, such as a three-phase 
fault on a transmission line, sudden loss of generators, 
or loss of a large load, occurs. 

Normally, (N-1) deterministic security criterion is 
used for power system transmission planning. This 
criterion has two key flaws. Firstly, the impacts of 
single component failure events are analyzed, but their 
probabilities of occurrence are usually overlooked. 
Secondly, multiple component failures are excluded 
from consideration. Moreover, it is hard to consider 
with all the uncertainty factors using deterministic 
methods, including uncertainties in load forecast and 
the location of future generation [30]. Generally, (N-1) 
security criterion considers line outages. However, in 
this paper, in addition to conventional security 
assessment, considering (N-1) line outages, (N-1) bus 
outages, will be utilized in identifying the optimal 
location of wind farm in a transmission network. Based 
on the literature review, it is concluded that most works 
on determining optimal location of wind farms deals 
with distribution networks. Moreover, incorporating 
(N-1) bus outages for this determination is not 
considered in any work. The chief contributions of this 
paper are: (1) formulation of a cost-optimal wind farm 
location that identifies locations to set up wind farms, 
based on security analysis, incorporating both (N-1) line 

and (N-1) bus outages, and consequently, (2) applying 
machine learning to reduce the computation efforts of a 
nonlinear OPF problem.  

The remainder of the paper is organized as follows. 
Section II discusses the mathematical formulation for 
OPF problem. Section III describes the interior-point 
algorithm for conducting OPF. Section IV discusses 
computation procedure. Section V describes a brief 
overview of machine learning approach for determining 
optimal wind farm location. Section VI describes the 
case study and simulations. Section VII discusses the 
results obtained, and finally, Section VIII concludes the 
paper along with suggested future research directions. 

II. MATHEMATICAL FORMULATION 

The mathematical formulation of OPF, 
incorporating conventional thermal and wind 
generation, is described below. Refer to Table I for 
description of various variables used. 

TABLE I.  DESCRIPTION OF VARIABLES USED 

Variable Description 

Csi system operating cost (thermal and wind) in 
($/hr) 

Cs mean system operating cost ($/hr) 

Ns number of Monte-Carlo (MC) samples 

 

Ci mean operating cost ($/hr) of thermal generator 
i 

Cw mean operating costs ($/hr) of wind generator W 

 

GiP  mean electrical power output (MW) of thermal 
generator i 

Pw mean electrical power output (MW) of wind 

generator W 

LINEC  mean optimal operating cost of the system, 
considering all individual (N-1) line outages. 

BUSC  mean optimal operating cost of the system, 

considering all (N-1) bus outages 

CT objective function of the optimization problem 

PD mean system load demand 

PL mean system transmission losses 

a, b, c cost coefficients of thermal generator i 

d, e, f cost coefficients of wind generator W 

 

Let siC denote the system operating cost, 

incorporating cost of conventional thermal generators 

and wind generator, for ith MC sample. Let sC denote 

the mean system operating cost. The total MC 
simulations, Ns, are limited to 1000, as they are 
sufficient to achieve suitable convergence. 
Mathematically, 
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where iC and wC  are the mean operating costs ($/hr) 

of thermal generator i and wind generator W, 

respectively; GiP and wP  are the mean electrical 

power outputs (MWs) of thermal generator i and wind 
generator W, respectively; a, b, and c are cost 
coefficients of thermal generator i, and d, e, and f are 
cost coefficients of wind generator W. 

Let LINEC  be the mean optimal operating cost of 

the system, considering all individual (N-1) line 
outages. The total lines in the considered test system 
(IEEE 39-bus) are 34. Mathematically, 

 

1 2 34.....LINE L L LC C C C= + +            (5) 

 

where 1LC denotes the mean optimal system 

operating cost when Line 1 is out of service, 2LC
denotes the mean optimal system operating cost when 
Line 2 is out of service, and similarly for other 
notations. 

Let BUSC  be the mean optimal operating cost of the 

system, considering all (N-1) bus outages. The total 
buses in the considered test system are 39. 
Mathematically, 

 

1 2 39.....BUS B B BC C C C= + +                          (6) 

 

where 1BC denotes the mean optimal system 

operating cost when Bus 1 is out of service, 2BC
denotes the mean optimal system operating cost when 
Bus 2 is out of service, and similarly for other 
notations. 

Let TC  be the objective function of the 

optimization problem. Mathematically, 
 

Minimize T Line BusC C C= +           (7) 

  
Subject to 

9

1

Gi w D L

i

P P P P
=

+ = +            (8) 

(min) (max)Gi Gi GiP P P                        (9) 

 

(min) (max)w w wP P P                          (10) 

  

(min) (max)Gi Gi GiQ Q Q          (11) 

 

(min) (max)w w wQ Q Q                  (12) 

 

(min) (max)k k kS S S                 (13) 

 

(min) (max)k k kV V V                 (14) 

 
   𝑇𝑘(𝑚𝑖𝑛) ≤ 𝑇𝑘 ≤ 𝑇𝑘(𝑚𝑎𝑥)         (15) 

 

where DP and LP denote mean system load demand 
and mean system transmission losses, respectively. 
Equations (9)-(12) represents active and reactive 
power limits of thermal and wind generators; (13) 
represents branch flow limits, i.e., maximum loading 

of transmission lines/transformers (100%), and (14) 
represents the voltage limits of busbars (0.95-1.05 per 
unit). Equation (15) represents transformer tap 
constraint, where 𝑇𝑘 is the transformer tap k; 
𝑇𝑘(𝑚𝑖𝑛) is the minimum of transformer tap k and 
𝑇𝑘(𝑚𝑎𝑥) is the maximum of transformer tap k. 

Security constrained optimal power flow 
(SCOPF) deals with OPF in the presence of (N-1) 
power system elements outage. Normally, the element 
is transmission line or a generator. The secure 
operation of a power system requires that there are no 
uncontrollable contingency violations. Therefore, in 
this case, the minimization of the objective function is 
done considering contingencies. The SCOPF 
regulates the controls to the base case (pre-
contingency condition) to avert violations in the post-
contingency states. If there are sufficient controls 
available in the network, the solution minimizes 
the objective function, and the network imposes 
contingency violations [31]. 

III. INTERIOR POINT ALGORITHM 

In this paper, the OPF performs a non-linear 
optimization based on an iterative interior-point 
algorithm, which is the AC optimization function in 
DIgSILENT PowerFactory software [32]. This 
algorithm is preferred due to its various benefits. This 
algorithm has a polynomial time asymptotic 
complexity 𝑂(𝑛3.5𝐿2 𝑙𝑜𝑔 𝐿 𝑙𝑜𝑔𝑙𝑜𝑔 𝐿), where L is the 
number of bits of input to the algorithm. Also, this 
algorithm is better for large, sparse problems because 
the linear algebra required for the algorithm is faster. 
This algorithm can solve problems for which no 
strictly feasible points exist. It can be used to detect 
the infeasibility of certain linear programming 
problems. Interior-point iterations can be parallelized 
to an extent (depending on problem structure). The 
opportunities for parallelism in the simplex method 
are more limited. In short, this algorithm provides a 
simple and fast approach for solving constrained 
optimization problems. The aim of the optimization is 

to minimize an objective function ( )f x , subject to 

the equality and inequality constraints, which are 
forced by the load flow equations and various power 
system elements, respectively. This is summarized 
mathematically as follows: 

          ( )Min f x                                       (16) 

Subject to           
 

                 ( ) 0g x =                                       (17) 

                ( ) 0h x                                          (18) 

 

where ( )g x represent the load flow equations and 

( )h x is the set of inequality constraints. Introducing 

a slack variable for each inequality constraint, 

                  ( ) 0g x =                   (19) 

               ( ) 0h x s+ =          (20) 

                   0s            (21) 

Incorporating logarithmic penalties and minimizing 
the function,  

     Min[ ( ) . log( )]i
i

f x u s−         (22) 
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where u is the penalty-weighting factor. To alter the 
contribution of penalty function, we define, 

                 log( )pen i
i

f s=                (23) 

 
To the overall minimization, the penalty weighting 
factor u will be decreased from an initial value to a 
target value (both values being defined by the user). 
The lesser the minimum penalty-weighting factor, the 
lower the applied penalty for a solution. The flowchart 
to solve the OPF based on an interior-point method is 
shown in Fig. 1. The five main steps are: (1) Initialize 
primal and dual variables of the problem, considering 
the non-negativity conditions, as they must be 
satisfied. Select safety value, centering and barrier 
parameters, (2) compute Newton direction by solving 
the system of equations, (3) determine the step size 
length and accordingly, update the variables, (4) 
compute the barrier parameter, and (5) if convergence 
criteria are fulfilled, then optimal solution is found; 
otherwise return to Step 2. 

IV. COMPUTATION PROCEDURE 

As mentioned before, the major task of this paper 
is to determine the optimal location of a wind farm in 
a power transmission network, based on security 
assessment, for a study period of 5 years. The IEEE 
39-bus test system is chosen to validate the proposed 
approach. The computation procedure is outlined in 
Fig. 2. In the first step, normal (Gaussian) distribution 
is used to characterize the randomness of wind active 
power as suggested by [33-34]. The mean  is 

chosen to be the original value of thermal generation, 
which is replaced, and standard deviation  is chosen 

to be 5% of the mean value. Similarly, a normal 
distribution is used to define the uncertainty in system 
loads. The active power of each load is assigned a 
mean  equal to the original load value, as given in 

test system data in [35], and a standard deviation   

equal to 5% of the mean value. After defining the 
Normal PDF for loads, steady state OPF is conducted 
to determine the mean system optimal operating cost, 
under base case (no line/bus outage). The test system 
(IEEE 39-bus) consists of ten synchronous 
generators. Each one is replaced individually (one at 
a time) by a wind generator having the same MW (and 
MVA) rating as of the synchronous generator. Then, 
SCOPF is conducted incorporating all individual (N-
1) line outages. Similarly, SCOPF is conducted 
incorporating all individual (N-1) bus outages. 

Consequently, value of TC  is obtained for each 

synchronous generation replacement. In the end, 

based on TC  values, optimal location of wind farm is 

determined, and consequently, a priority order list of 
wind generators is established. 
 

 
 

Fig. 1.  Interior-point algorithm-based OPF 
 

V. MACHINE LEARNING FOR OPTIMAL WIND FARM 

LOCATION 

Machine learning is the study of computer 
algorithms that improve automatically through 
experience. It is basically a subset of artificial 
intelligence (the ability of the system to correctly 
interpret external data, to learn from such data, and to 
use those learnings to achieve specific goals and tasks 
through flexible adaptation) [36]. Machine learning 
algorithms build a mathematical model based on 
sample data, known as “training data”, to make 
predictions without being explicitly programmed to 
do so [36]. There are three major kinds of machine 
learning as shown in Fig. 3 [37]. 

Supervised learning is a type of machine learning 
algorithm or approach which builds a mathematical 
model of a set of data that contains both the inputs and 
the desired outputs. This can be used for (1) output 
prediction (regression) and (2) classification [38]. 
Unsupervised learning is used to identify the hidden 
patterns in datasets, and reinforcement learning 
algorithm learns from the environments and acts 
accordingly. This paper focuses on supervised 
learning. 
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Fig. 2.  Computation procedure for optimal location of wind 
farm W 

 

 
Fig. 3.  Machine learning classification 

 
Supervised learning is preferred due to various 

reasons. It allows to collect data or produce a data 
output using the previous experiences. It helps to 
optimize performance criteria using experience. Most 
importantly, it is very useful in solving various types 
of real-world computation problems. Various 
algorithms can be used for supervised learning such 
as artificial neural networks (ANNs), decision trees 
(DTs), support vector machines (SVMs), random 
forests, etc. [39] as outlined in Fig. 4; however, this 
paper uses ANNs to accomplish the task of training 
for supervised machine learning. This is because 
ANNs offer various advantages. For instance, they 
can be trained with any number of inputs and layers. 
They have numerical strength that can perform 
multiple tasks simultaneously. The learning methods 
of ANN are quite robust to noise in the training data. 
The training examples may contain errors, which do 
not affect the final output. 

 
 
 

 
 

Fig. 4.  Supervised machine learning major types 

 
An ANN normally consists of a set of connected 

nodes (known as artificial neurons), which replicate 
the features of the biological neurons [40]. Each 
neuron can communicate a signal to other neurons, 
which, in return, processes it. A simple diagram of 
feedforward neural network is shown in Fig. 5. 

 

 
 

Fig. 5.  Feedforward ANN 

 
ANN is usually used to predict the values for a set 

of new inputs, when the network is trained for existing 
data. To quantify the performance of the prediction, 
mean squared error (MSE) is usually used. 
Mathematically, it is given by 

           

2

1

( )
N

i i

i

f y

MSE
N

=

−

=


         (24)

     
where N denotes total number of data points; fi and yi 
denote the predicted and actual value of output, 
respectively.   
Backpropagation algorithm is normally used to adjust 
weights and biases of neural network. This 
algorithm is perhaps the most central building block 
in a neural network. It was first introduced in 1960s, 
and almost 30 years later, it was disseminated by 
Rumelhart, Hinton and Williams. The algorithm is 
essentially used train a neural network through a 
technique called chain rule. In simple words, after 
each forward pass through a network, 
backpropagation performs a backward pass while 
adjusting the weights and biases of the model. The 
detailed discussion of the algorithm is beyond the 
scope of this paper. 

The activation function of the artificial neurons in 
ANNs implementing the backpropagation algorithm is 
a weighted sum (the sum of the inputs xi multiplied by 
their respective weights wji): 

𝐴𝑗(𝑥, 𝑤) = ∑ 𝑥𝑖𝑤𝑗𝑖𝑛
𝑖=0           (25) 

https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Neuron
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As evident, the activation depends only on the 
inputs and the weights. If the output function would be 
the identity (i.e., output equals activation), the neuron 
would be called linear. The most common output 
function is the sigmoidal function: 

     𝑂𝑗(𝑥, 𝑤) =
1

1+𝑒𝐴𝑗(𝑥,𝑤)         (26) 

The goal of the training process is to obtain a desired 
output when certain inputs are given. Since the error is 
the difference between the actual and the desired 
output, the error depends on the weights, and there is a 
need to adjust the weights to minimize the error. The 
error function for the output of each neuron can be 
defined as: 

𝐸𝑗(𝑥, 𝑤, 𝑑) = (𝑂𝑗(𝑥, 𝑤) − 𝑑𝑗)2         (27) 

In the next step, the backpropagation algorithm 
computes how the error depends on the output, inputs, 
and weights. After determining this, the weights can be 
adjusted using the method of gradient descent: 

                       Δ𝑤𝑗𝑖 = −𝜂
∂𝐸

∂𝑤𝑗𝑖
                        (28) 

VI. CASE STUDY AND SIMULATIONS 

The well-known IEEE 39-bus test transmission 
system, also known as the New England system, 
operating at 345 kV, was used to conduct the required 
simulations. The numerical data and parameters were 
taken from [41]. It consists of 10 thermal generators, 
34 transmission lines and 12 transformers. The one-
line diagram is shown in Fig. 6. The coefficients of 
generator cost curves for thermal generators are taken 
from [42]. For representing wind cost, a linear cost 
function, based on parameters from [43], is used. This 
practice is in coherence with the research conducted 
in [44]. As a single wind generator is considered in 
this work, it is assumed its cost parameters remain the 
same, wherever it is connected in the network. It is 
assumed that the independent system operator (ISO) 
is buying wind energy from an Independent Power 
Producer (IPP) [45], according to cost parameters 
based on [43]. Therefore, the wind cost is 
incorporated as operating cost in the system. NS MC 
simulations are used to sample load and wind 
probability density functions (PDFs), while 
conducting optimal power flow. DIgSILENT 
PowerFactory software was used to conduct the 
required simulations. DIgSILENT Programming 
Language (DPL) and optimal power flow toolbox was 
used to write scripts and run simulations, for OPF and 
SCOPF, respectively.  

 

 
 

Fig. 6.  IEEE 39-bus test system 

 

VII. RESULTS AND DISCUSSION 

The value of LINEC  and BUSC for each 

synchronous generation replacement is shown in Fig. 
7 and Fig. 8, respectively. Consequently, the value of 

TC  for each synchronous generation replacement is 

shown in Fig. 9. Referring to Fig. 7 and Fig. 8, W1 
indicates that synchronous generator G1 is replaced 
by wind farm W. Similarly, W2 indicates that 
synchronous generator G2 is replaced by wind farm 
W, and similarly for other notations. Moreover, it is 
assumed that all considered locations for wind farms 
are rich in wind resources, and there is no social or 
political hindrance involved for placing wind farm, 
anywhere in the network. 

As evident from Fig. 9, W10 gives the highest 
cost. Thus, this location is least optimal. W1 gives 
lowest cost, thus optimal location for wind farm is 
Bus 39 (G1 is located at Bus 39). 

 

 

Fig. 7.  Values of LINEC for different locations of W 

 

Therefore, based on TC  values, a priority list of 

wind locations can be constructed, as shown in Table 
II. In this table, “1” indicates the highest priority and 
“10” the lowest. If wind generations are to be added 
in the network, the synchronous generation should be 
replaced based on this priority list. 

In the second part, supervised machine learning 
was applied to a neural network, based on a 
feedforward architecture. MATLAB’s neural network 
toolbox was used to accomplish this task. The 
flowchart for the process is shown in Fig. 10. 

 



Application of Machine Learning for Optimal Wind Farm Location 

 

15 

 

 

Fig. 8.  Values of BUSC for different locations of W 

 

 

 

Fig. 9.  Values of TC for different locations of W 

 

TABLE II.  PRIORITY ORDER LIST FOR W BASED ON TC VALUES 

Priority   
order Wind generation location 

1 W1 (Bus 39) 

2 W9 (Bus 38) 

3 W7 (Bus 23) 

4 W4 (Bus 19) 

5 W3 (Bus 10) 

6 W8 (Bus 37) 

7 W6 (Bus 35) 

8 W2 (Bus 31) 

9 W5 (Bus 20) 

 10 W10 (Bus 30) 

 

 
 

 
Fig. 10.  Feature selection and ANN training process 

 
Line/bus number was used as input data and 

optimal cost was used as output data. 100 lines/50 
buses (one at a time) were randomly taken out, and 
consequently, corresponding optimal cost was 

determined using nonlinear OPF. The cost values 
were normalized such that they lie between 0 and 1 
(with 1 being the highest cost for a single line/bus 
outage). This data was used as the training data for the 
neural network model. Levenberg-Marquardt 
algorithm, also known as damped least squares, was 
used to train the neural network. This algorithm is 
popular among the researchers, as it gives a fast 
convergence and enhanced training performance [46-
47]. The number of neurons used in the hidden layer 
were set to 50. The sigmoid function was used as the 
activation function (this function is used to determine 
the output of a neuron in an ANN). Other activation 
function, such as hyperbolic tangent, rectified linear 
unit, swish and softmax may be used; however, the 
use of activation function does not drastically impact 
the results presented in this paper. Their detailed 
discussion is beyond the scope of the presented paper; 
however, an avid reader may refer to [48] for a 
detailed description of numerous neural network 
activation functions.  

The output results are shown in Figs. 11-14. As 
evident from Fig. 11, the value of correlation 
coefficient, R, is quite close to 1 (in all cases: training, 
validation and testing), thus, the prediction accuracy 
is about 99%, which is quite high. Referring to Fig. 
12, it shows the best validation performance for the 
training model. This means the MSE is reduced as 

much as possible, which is 71.24 10− in this case. 

Similarly, for bus data, the prediction accuracy is 
about 98%, as evident from Fig. 13. The 
corresponding learning curve (based on MSE) is 
shown in Fig. 14, demonstrating the optimum 
validation performance (0.0594) at epoch 720. It must 
be noted that an epoch is essentially a measure of the 
number of times all the training vectors are used once 
to update the weights. For complete and accurate 
training, all the training samples pass through the 
learning algorithm simultaneously in 
one epoch, before weights and biases are updated 
[49]. 

 
 

 
 

Fig. 11.  Predicted vs. actual values (single line outage) 
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Fig. 12.  Best validation performance (at epoch 578) for 
optimal cost (learning curve for neural network) 

 
 

 
 

Fig. 13.  Predicted vs. actual values (single bus outage) 

 
 
 

Fig. 14.  Best validation performance (at epoch 720) for 
optimal cost (learning curve for neural network) 

 
By using machine learning algorithms, the total 

cost TC can be predicted for any wind farm location, 

without solving the cumbersome nonlinear OPF 
problem. Thus, to conclude the discussion, optimal 
wind farm location was found, for a power 
transmission system, based on power system security 

assessment. For IEEE 39-bus test system, it was found 
that Bus 39 is the optimal wind farm location. For 
integrating multiple wind farms, a priority order list 
was also established. This is very helpful for power 
system planners, as it gives a quick idea for locating 
wind farm for gaining maximum economic benefits, 
considering both the line and bus outages. 

Various other research [26, 50-53] have been 
performed to evaluate optimal operating cost using 
machine learning approaches. Table III displays the 
comparison of performance metric (correlation 
coefficient, R), for the proposed approach with similar 
research. As evident, the result obtained by the 
proposed approach is comparable to similar research, 
and hence this validates its effectiveness for the 
desired application of optimal cost prediction, in the 
presence of uncertainties. 

As mentioned before, various research papers [18, 
54-62] have applied conventional approaches for 
optimal wind farm location; however, the proposed 
approach is computationally efficient than these 
approaches as it uses machine learning to reduce the 
computation burden of a nonlinear OPF/SCOPF 
problem. Table IV provides a summary of advantages 
and disadvantages of some main approaches used for 
renewable generation (including wind farm) 
placement [63]. 

Recent research [64-65] indicate that machine 
learning has various applications in power systems, 
considering the increasing uncertainties and the 
popularity of deregulated electricity market [66-76]. 
Moreover, recent research literature [77-82] has 
indicated the significance of using artificial 
intelligence and machine learning in various wind 
power applications. Also, numerous research papers 
[25, 83-85] have strongly suggested the application of 
machine learning data-driven approaches for 
OPF/SCOPF. 

TABLE III.  COMPARISON OF PROPOSED APPROACH WITH SIMILAR 

RESEARCH 

Approach type Value of R 

Proposed in this paper 0.992 

[26] 0.990 

[50] 0.978 

[51] 0.951 

[52] 0.876 

[53] 0.975 

 

VIII. CONCLUSION AND FUTURE WORK 

In this paper, a methodology based on security 

assessment was applied to determine the optimal wind 

farm location in a transmission system. IEEE 39-bus 

test system was used to test the effectiveness of the 

desired approach. The results show that synchronous 

generation G1 (at Bus 39) should be replaced by the 

wind farm, considering the minimization of TC as the 
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objective function. Thus, Bus 39 is the optimal wind 

farm location. Moreover, if G10 (at Bus 30) is replaced 

by the wind farm, TC has the highest value, thus, it is 

the least desirable wind farm location. In addition to 

that, a priority order list was formulated which can help 

in integrating multiple wind farms in the power 

transmission system. Therefore, the proposed method is 

significant to power system planners to determine the 

optimal location of wind farms under reorganized 

situation of power systems. To counter the issue of 

computation time, a machine learning approach was 

proposed to predict the optimal cost of the system based 

on a single line/bus outage. This can predict the value 

of TC for any wind farm location, without solving the 

cumbersome nonlinear OPF. This is specifically helpful 

for large-scale power systems. The main technical 

benefit of the proposed approach is that it gives faster 

prediction of OPF computation when compared to 

conventional methods. Moreover, the economic 

benefit of the proposed approach is that it allows power 

system planners to make rapid critical decisions (based 

on the neural network-based model of OPF/SCOPF 

predictor). This, in turn, prevents the possibility of 

equipment damage and cascading outages due to 

prolonged decision-making, thereby providing a huge 

economic advantage. 

As a future work, the proposed approach can be 

applied for determining optimal location of solar 

farms, considering correlation among solar generation 

and system load. Other soft computing techniques such 

as fuzzy computing and Chaos theory can be applied, 

and their performance can be compared with that of 

neural networks. Moreover, other kinds of neural 

networks based on convolution and radial basis 

activation functions, can be applied. Reinforcement 

learning for OPF/SCOPF can also be explored.       

TABLE IV.  ADVANTAGES AND DISADVANTAGES OF WIND FARM  PLACEMENT APPROACHES

Approach Advantages Disadvantages 

Analytical Method Easy to implement, high precision factor, 
computational time efficiency 

Fewer literature examples, lacks 
robustness, only can consider single 

objective and single renewable generator 

at a time 

Mixed Integer Nonlinear 

Programming 

High precision factor, computational time 

efficiency 
Hard to implement and understand 

Evolutionary Algorithm 

Efficient performance for finding the 

global optimum, easy to find literature 
examples 

Relatively harder to code, premature 

convergence, possibility of trapping into 
local optima, lower precision factor 

Simulated Annealing 

Ease of implementation, ability to 

provide reasonably good solutions for 
many combinatorial problems, 

robustness 

Relatively lower performance for finding 

the global optimum, large computational 

time 

Differential Evolution 
Fewer parameters setting, capable of 
handling complex optimization problems 

Unstable convergence, possibility of 
trapping into local optima 

Particle Swarm 
Optimization 

Easy to code with few equations, easy to 
find literature examples 

Relatively lower performance for finding 

the global optimum, fewer literature 

examples 

Tabu Search 

Efficient performance for achieve an 

optimal or sub optimal solution, capable 

to escape from local minimum 

Relatively harder to code due to many 

parameters to be tuned, lower precision 

factor 

Firefly Algorithm Easy to understand and code 
Slow convergence, fewer literature 
examples 

Imperialist Competition 

Algorithm 

Capable of handling complex 

optimization problems 

Relatively harder to code due to many 

parameters to be tuned, fewer literature 
examples 

Artificial Intelligence 

Approaches 

Efficient performance, fewer iterations, 

easy to find literature examples 

May trap in local minima, various setting 

parameters, difficult to code 
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