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Abstract – The rise of mobile line-following robots in 

various industrial and civil fields of activity suggests the 

advent of increasingly robust autonomous mobile robots. 

However, this development is still marked by several 

major challenges such as navigation with obstacle 

avoidance in unknown or known environments and, more 

particularly, the fluidity of their mobility during 

trajectory turns due to their kinematics. The objective of 

this paper is to provide one of the appropriate solutions 

to this problem. Our contribution will focus on the 

estimation of the model of our DC motor via data from 

the acquisition of speed measurements of the latter 

during the experiment carried out under Arduino and 

Matlab, then on the design of speed controllers for the 

control of the DC motor of a mobile car-type robot and 

finally on a comparison of the responses between the 

classic PID controllers and those of Soft Computing 

(fuzzy controller and fuzzy neuro). The implementation 

is carried out with an Arduino microcontroller for the 

control of the DC motor (FIT0521) via a L298N double 

H-bridge motor driver, and on the other hand by 

implementing the different controllers mentioned above 

in the Matlab - Simulink environment. The simulation 

results of the three control models showed the robustness 

of the smart controllers compared to the classical one for 

non-linear systems. These results were confirmed 

experimentally on our DC motor "FIT0521" used for the 

circumstance in place of the motors of the manufacturer 

"Elegoo" in the mobile robots of car type and the analysis 

of the curves thus obtained. 

 

Keywords-PID controller; fuzzy controller; neuro-

fuzzy controller; DC motor; Soft Computing 

 

I. INTRODUCTION 

Robotic vehicles have been increasingly used in 
industrial, civil and public environments in recent 
years [1]. This is the case of line-following robots, 
which have become indispensable in industry to 
transport multiple loads from one workstation to 
another. The automation of the mobility of these robots 

is largely due to the use of its increasingly powerful 
exteroceptive and proprioceptive sensors on the one hand, and 
on the other hand thanks to the speed control of its DC motor, 
the result of the use of increasingly robust controllers. 
Nowadays, more than 95% of control application designs use 
the classical Proportional-Integral-Derivative (PID) controller 
due to its simplicity and applicability [2],[3],[4]. Despite the 
popularity of this type of controller (PID), it is clear that they 
have shortcomings when dealing with more complex systems 
[5]. The advent of soft computing methods (fuzzy logic, neural 
networks, neuro-fuzzy networks) has opened up a new field of 
investigation for the development of new control systems that 
are more robust and efficient than those of conventional 
controllers. The works of [6],[7],[8] demonstrate the growing 
and unavoidable interest of soft computing. 

The problem of our study is related to the speed control of 
the DC motor of our robot by the implementation of 
controllers adequate to our specifications. This mobile robot 
(Elegoo) of the car type is indeed confronted with a problem 
of fluidity of its mobility at the time of the follow-up of line 
particularly at the level of the turns due to its kinematics.   

The objective of this article will be to estimate the model 
of the DC motor (FIT0521) via measurements of the speed of 
rotation of the latter carried out under Arduino and Matlab, on 
the other hand, on the design of three controllers: PID, fuzzy 
and a hybrid controller of type (Anfis). Then, on the 
implementation of the said controllers within the 
Matlab/Simulink platform, then on the simulation of a control 
system of an DC motor in open loop, and finally, on the 
comparison of the response of the behavior of the various 
above-mentioned controllers within the platform of the 
control system (DC motor of the Elegoo robot) via the 
experimental results obtained in order to make the choice of 
the most powerful and robust controller to answer our 
problematic as well as possible. 

This paper is structured as follows: Section 2 is devoted to 
the design methodology developed, section 3 highlights the 
results and discussion from the test phases and finally section 
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4 is devoted to a conclusion and perspectives that will 
take stock of our entire study and future work.    

II. MEANS AND TOOLS OF INVESTIGATION 

In order to carry out this work, we developed and 
simulated, in Matlab/Simulink, the models 
corresponding to the elements of the system under 
study, namely: the model associated with the speed 
control of an DC motor, those of the "PID", "Fuzzy" 
and hybrid neuro-fuzzy "Anfis" controllers. This 
section is devoted to the presentation of the different 
means and tools used during our work. 

A. Description of the block diagram of the working 

platform 

The block diagram for the overall system 
description is shown in Figure 2.1. In this block, three 
main hardware components are implemented for this 
research. The Arduino Mega2560 microcontroller 
controls the kinematics of the DC motor by controlling 
the input speed to the motor. Both classical (PID) and 
intelligent (fuzzy and neuro-fuzzy) control techniques 
are implemented in the microcontroller via Matlab / 
Simulink to execute the PWM signal for driving the 
DC motor. A DC motor gearbox with magnetic 
encoder, planetary gearbox and 34:1 gear ratio, which 
delivers 210RPM with a nominal voltage of 6VDC. An 
L298N double H-bridge motor driver that controls the 
direction and speed of the DC motor. 

 

 
Figure 2.1: Block diagram for DC motor speed control 

 

B. Hardware tools 

1) Arduino Mega 2560 microcontroller 

Arduino Mega is a microcontroller board based on 
the ATmega 2560 shown in Fig. 2.2. It has 54 digital 
input/output pins (15 of which can be used as PWM 
outputs), 16 analogue inputs, a clock rate of 16 MHz, a 
USB connection, a power supply socket, an ICSP 
socket and a reset button. It contains everything needed 
to support the microcontroller; it can be simply 
connected to a computer with a USB cable or powered 
with an AC-DC adapter or battery for powering up. In 
this article, the Arduino Mega microcontroller is very 
well suited to drive the PWM signal of the DC motor 
to improve the output response of the DC motor speed 
control system. 

 

 
Figure 2.2: Arduino Mega2560 Microcontroller [9] 

 

2) L298N Dual H-Bridge Controller 

The L298N H-bridge IC, shown in Fig. 2.3, can control the 
speed and direction of two DC motors. This module can be 
used with motors that have a voltage between 5 and 35V DC 
with a peak current up to 2A. The module has two screw 
terminals for motor A and B, and another screw terminal for 
the ground pin, the VCC for the motor and a 5V pin which can 
be an input or output. The pin assignment for the L298N dual 
H-bridge module is shown in Table 1. The digital pin 
assignment of HIGH to LOW or LOW to HIGH is used IN1 
and IN2 on the L298N board to control the direction. And the 
PWM output signal from the controller is sent to ENA or ENB 
to control the speed. The control of the speed or the forward 
and reverse position of the motor was done using the PWM 
signal. Then, using the analogWrite() function and sending the 
PWM signal to the Enable pin of the L298N board, actually 
drives the motor.[10] 

TABLE 2.1: PIN ASSIGNMENTS FOR THE L298N 

Out 1 Motor A lead out 

Out 2 Motor A led out 

Out 3 Motor B lead out 

Out 4 Motor B lead out 

GND Ground 

Vcc 5V input 

ENA Enables PWM signal for motor A 

IN1 Enable motor A 

IN2 Enable motor A 

IN3 Enable motor B 

IN4 Enable motor B 

ENB Enables PWM signal for motor B 

 

 
Figure 2.3: L298N motor control board [11] 

 

3) Motor with DC magnetic encoder 

The FIT0521 DC geared motor with encoder shown in Fig. 
2.4 is a suitable motor to drive the speed control system. It 
comes with a magnetic encoder output and a reduced planetary 
gear ratio of 34:1. It can deliver 210RPM with a nominal 
voltage of 6VDC. To read the count values from the encoder, 
the user would check the rotational condition of channels A 
and B based on the signals obtained during the experiment. 
For the values of the number of rotor shafts per revolution, it 
is very important to multiply the gear ratio by the count values. 
The motor characteristics are shown in Table 2.2. 

 

 
Figure 2.4: FIT0521 geared motor with magnetic encoder [12],[13] 
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TABLE 2.2: TECHNICAL SPECIFICATIONS OF THE FIT0521 GEARED 

MOTOR [13] 

Manufacturer DFROBOT 

Motor type DC 

Type of motor With encoder, with transmission 

Motor Rated Voltage 6V  

Encoder Rated Voltage 3,3 / 5V 

Reducer Reduction Ratio 1/34 

No load Speed 210RPM@0,13A 

Maximum Efficiency 

Point 

load 2,0kg.cm /170RPM /2,0W 

/0,6A 

Maximum Power point load 5,2kg.cm /110RPM /3,1W 

/1,1A 

Stall Torque 10kg.cm 

Stall Current 3,2A 

 

Hall Resolution 

Hall Resolution 11× Precision 

reduction Ratio 34,02 = 341,2PPR  

Dimension 52× Φ 24,4mm/2,05× Φ 

0,96inches 

Weight 96g 

 

4) Reading the magnetic encoder 

The encoder wheels allow the direction and speed 
of rotation of the motor to be known. A magnetic disc 
passes in front of two sensors (hall effect) which detect 
it in turn. Each time the magnet passes, a pulse, also 
called a tick, is sent to the Arduino board. There is a 
rising edge (H) and a falling edge (L) for each sensor, 
i.e. four different possible positions (HH, LL, HL, LH). 
In one period, it is therefore possible to pass through 
four positions, each 90° apart, 360° being equivalent to 
one period. This is why we speak of a quadrature shift 
of the signal. Furthermore, depending on the sequence 
of edges, it is easy to determine the direction of 
rotation. For example, if HH is recorded and then HL 
comes from, we know that the motor is rotating 
clockwise. If, on the other hand, LH comes in, it is the 
other way round. 

The magnetic encoder uses magnets instead of the 
traditional black lines, and these must not be too close 
together to avoid interference. However, attached to 
the motor shaft, the number of pulses per revolution of 
the output shaft is multiplied by 34 and is therefore 
largely sufficient in our case. 

C. Software tools 

Matlab R2020a and Arduino were used to model 
and acquire the rotational speeds of the DC motor and 
to implement the various controllers used and the 
resulting model. 

 

D. Acquisition of the DC motor rotation speed 

The acquisition of the kinematics of our DC motor 
can be carried out in three ways depending on the 
equipment available, namely: By the use of a digital 
tachometer, or by the use of an optical sensor and 
finally via a magnetic sensor with hall effect embedded 
on our DC motor. We have opted to use the magnetic 
incremental encoder of the DC motor and the use of an 
Arduino Mega microcontroller as shown in figure 3.1 
below. Two options are possible : the first approach is 

to make the assembly shown in Figure 3.1 and develop a 
sketch implemented via the Arduino IDE (Integrated 
Development Environment). The second approach, the one 
chosen in our study, consists of creating a block diagram for 
acquiring the speed of the DC motor (see the "Rotation Speed 
Motor (RPM)" block in figure 3.3 or 3.4) using Simulink and 
the synoptic diagram in figure 3.1, after which we recorded 
the different values of the DC motor 's rotation speed and also 
the variation of this speed over a period of 13s. 

E. Estimation of the DC motor parameters 

To determine the parameters (R; L; J; f; Ke) of the DC 
motor, we adjusted the parameters of the acausal model from 
the initialization parameters (see Table 2.3) and the velocity 
acquisition measurements of the DC motor. The procedure 
can be simplified as follows: 

✓ Creation of the input signal (voltage at the DC motor 

input) and output signal (DC motor speed) of the 

acausal model,  

✓ Then, implementation of this model via Simulink 

(see figure 2.5) and  

✓ Finally, search for the parameters via the Matlab 

toolbox (Apps →Parameter Estimator) 

F. Modelling of our DC motor 

According to [15], DC motors are widely used in industrial 
applications due to their speed control techniques. For the 
modelling of our FIT0521 gearmotor, we opted for an acausal 
model approach proposed by Matlab/Simulink whose 
characteristics of the initialization parameters are mentioned 
in Table 2.3. 

TABLE 2.3: INITIALIZATION PARAMETERS OF THE ACAUSAL DC MOTOR 

MODEL [16] 

Symbols Description Values 

R Armature resistance [Ω] 4 

L Armature inductance [H] 0,5 

F Viscous friction [N.m/(rad/s)] 10-4 

J Moment of inertia [kg.m2] 3.10-5 

Ke Fem constant [V/(rad/s)] 5.10-5 

 

According to [17], the acausal model of a possible DC 

motor is represented as in Figure 2.5. 

 

   
Figure 2.5: Acausal model of the studied DC motor (made in Matlab 

R2020a) 

 

From the acausal model (in which the voltage sensor, the 
experimental measurements and the oscilloscope are 
removed), a subsystem is created in Simulink in order to 
obtain a causal model of our DC motor. This step is performed 
once the new estimated parameters of the DC motor are 
obtained (Table 3.1)  
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Figure 2.6: Block diagram of the acausal open-loop DC motor 

model (made in Matlab Simulink) 

 

G. Design of PID, fuzzy and neuro-fuzzy controllers 

(Anfis type) 

 

1)  Design of the digital PID controller 

The general transfer function for a PID controller 
in the Laplace domain can be written as shown in (2.1) 
where KP represents the proportional gain, 𝐾D the 
derivative gain and 𝐾I the integral gain. Considering 
the effect of each term in the PID controller, the PID 
parameters were determined by automatically setting 
the " PID Controller" block of Matlab/Simulink. This 
block was initialized with the following parameters 
(see Table 2.1). The "Tune" function allowed the 
automatic setting of the PID controller and its transfer 
function has the expression (2.2) where N represents 
filter coefficient.  

𝑃𝐼𝐷(𝑠) = 𝐾𝑃 +
𝐾𝐼

𝑠
+ 𝐾𝐷𝑠      (2.1) 

 

𝑃𝐼𝐷(𝑠) = 𝐾𝑃 +
𝐾𝐼

𝑠
+ 𝐾𝐷

𝑁

1 + 𝑁
1
𝑠

      (2.2) 

 

TABLE 2.4: SYSTEM PID CONTROLLER PARAMETERS 

Control 

parameters 

Block parameters  

(before 

adjustment) 

Block parameters  

(after 

adjustment) 

KP 0,6844 7,161e-05 

KI 0,5975 0,00032912 

KD 0,0119 0,000 

N 59 100 

 

 

2) Takagi-Sugeno (TS) fuzzy controller design  

The work of [18] shows that Takagi-Sugeno fuzzy 
models are not only well known but also effective for 
non-linear systems. The design of the speed controller 
using fuzzy logic requires only a simple description of 
the behaviour of the system to be controlled. It consists 
of three parts (Figure 2.7) : fuzzification, inference 
rules and defuzzification. The controller used in our 
case consists of two input variables (the speed error 
"err" and the speed error variation "derr") and one 
output variable (the DC motor voltage command 
"cde") 

 

 
Figure. 2.7: Block diagram of the fuzzy controller [18] 

 

The two most common types of fuzzy controllers are 
Mamdani and Sugeno. In all our application, we used the 
second controller (Sugeno) [6]. In this case the fuzzy operators 
are realized as follows:  

✓ And method: by the « min » function 

✓ Or method: by the « max » function 

✓ Implication: by the « prod » function 

✓ Aggregation: by the « sum » function 

✓ Defuzzification: by the « Wtaver » function 

The main advantage of the Takagi-Sugeno (TS) technique 
is that it simplifies the aggregation calculation, so that a net 
solution can be obtained more quickly and the mechanism of 
the overall calculation can be lightened significantly. 
According to [19], the final output in TS modelling is equal to 
the weighted average of the output of each rule. This average 
is given by expression (15): 

 𝐶𝐺𝑠𝑢𝑔𝑒𝑛𝑜 =
∑ 𝑍𝑖𝑊𝑖

𝑛
𝑖=𝑛

∑ 𝑊𝑖
𝑛
𝑖=1

             (15) 

Where Zi is the output level of each rule Ri and Wi the 
membership degrees calculated by equation: 

𝑊𝑖 = 𝜇𝐴𝑖(𝐸)𝜇𝐵𝑖(∆𝐸)            (16) 

The writing of the inference rules is based on the 
description of the dynamic behavior of the system to be 
controlled. The interference rules of the fuzzy controller used 
for the speed control of the DC motor are summarized in Table 
2.5. These rules have a local effect on the behavior of the 
system. 

TABLE 2.5: INFERENCE RULES 

 
 
The membership functions used in our work are of 

Gaussian, trapezoidal, triangular type for the inputs, while 
they are of singleton type for the output (see figures: 2.8, 2.9 
and 2.10). Their distribution is defined as follows [20]: 

 

 
Figure 2.8: Fuzzification of the velocity error (err) 

 

Command (Cde) 
derr 

NB NS Z PS PB 

err 

N PB PM PS PS Z 

Z PM Z Z Z NS 

P Z NS NM NM NB 
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 Figure 2.9: Fuzzification of the velocity error variation (derr) 

 

 
Figure 2.10: Fuzzification of the output command (cde) 

 

The acronym of the linguistic values is defined as 
follows: 

Nota Bene: NB: Negative Large; NM: Negative 
Medium; NS: Negative Small; Z: Zero; PS: Positive 
Small; PM: Positive Medium; PB: Positive Large or 
Big. 

 
Figure 2.11: Characteristic surface of inference rules 

(defuzzification) 

 

3) Design of the Anfis neuro-fuzzy controller 

Developed by [8], the Anfis model, also known as 
an adaptive network based on a fuzzy inference 
system, is a universal approximator. The neuro-fuzzy 
system used for this purpose is of the Takagi-Sugeno 
(TS) type.     

 

a. Description and structure of the neuro-fuzzy 

controller (Anfis) 

Our developed Anfis controller consists of two input 
variables (the velocity error "err" and the velocity error 
variation "derr" of the DC motor) and one output variable (the 
voltage command "cde").  This controller allows the automatic 
generation of fuzzy rules based on Sugeno's inference model.

 
 Figure 2.12: Architecture of the proposed ANFIS model [21] 

 

The equivalent neural structure proposed in Matlab is 
shown in Figure 2.13. 

 

 
Figure 2.13: Neural structure of the proposed model in Matlab 

 

b. Training of the "ANFIS network training" controller 

Our ANFIS speed controller uses for its learning a 
combination of two algorithms: the backpropagation 
algorithm for learning the membership functions and the least 
squares estimation algorithm for determining the linear 
combination of the rule conclusions. Therefore its learning is 
done in two phases, a direct and an inverse one, during the 
direct phase the signals are propagated to the 5th layer, the 
parameters of the consequences of the rules are adjusted 
following the least squares algorithm. In the reverse phase the 
error is propagated in the opposite direction and the 
parameters of the premises are adjusted according to the back-
propagation algorithm [22]. 

 The database is obtained via the "To Workspace" block of 
Simulink from the fuzzy controller and has been randomly 
split into two parts, one for learning the models (ANFIS) 
which represent (80%) of the total database size and the other 
for validation (20%). The result of the learning process is 
shown in Figure 2.14. 
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Figure 2.14: Neuro-fuzzy network training (with a number of 

iterations of 2500) 

 

c. Testing the generalisation capacity after 

training 

After training the adaptive neuro-fuzzy system 
(ANFIS), we tested its generalisation, by presenting 
validation data (Checking Data) that is 20% of the total 
size of the database. 

 

 

 
Figure 2.15: Testing generalisation capacity after learning 

(validation phase) 

III. RESULTS AND DISCUSSION 

The performance of the three designed controllers 
was simulated in Matlab/Simulink as a block diagram 
as shown in Figures 3.2, 3.3 and 3.4. The setpoint of 
the block diagram is a step and or square wave signal. 
The results show that the soft computing controllers 
perform better than the digital PID controller. 

 

 
Figure 3.1: DC motor speed acquisition flow chart 

 

 

Figure 3.2: Block diagram of the velocity response of the DC motor 

with the estimated model (and the different controllers) 

 
Figure 3.3: Block diagram of the measured velocity response model of the 

DC motor with the fuzzy controller 

 

 
Figure 3.4: Block diagram of the measured speed response model of the DC 

motor with the PID controller 

 

 
Figure 3.5: Block diagram of the measured speed response model of the DC 

motor with the Anfis controller 

 

Results obtained with the estimated model of the 
considered DC motor (Figures 3.7 and 3.8).  

The acquisition of the speed of the DC motor (see figure 
3.6) is done via figure 3.1 and from Simulink. The velocity 
acquisition will act as a database for the setpoint when servo-
controlling the DC motor.  

 Figure 3.6 shows the estimated or simulated model in red 
and the real or measured model in blue. The voltage at the 
input of the DC motor is also represented and has been fixed 
at 7,4volts corresponding to the power supply batteries (two 
accumulators of 3,7V each) used for the test case. 

 

 

Figure 3.6: Velocity representation of the estimated and measured model of 

the DC motor and the setpoint voltage (7.4Volts) 

 

Figure 3.6.1 shows the evolution of the estimation of the 
DC motor parameters (R, L, J, f, Ke) according to the different 
iterations performed by minimizing the square error of the 
sum of the estimation. It took 36 iterations to obtain the best 
precision, which is of the order of 0.8357. 
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Figure 3.6.1: Estimated DC motor parameter curves 

 

• New DC motor parameters after estimation of 

the real model  

TABLE 3.1: ESTIMATED PARAMETERS OF THE ACAUSAL MODEL 

Symbols Description Values 

R Armature resistance [Ω] 0.017657 

L Armature inductance [H] 0.027677 

F Viscous friction 

[N.m/(rad/s)] 

9.5527e-05 

J Moment of inertia [kg.m2] 2.4952e-06 

Ke Fem constant [V/(rad/s)] 0.0017572 

 

Figures 3.7, 3.7.1, and 3.7.2 represent the step 
responses from the real model (from the block 
diagrams in Figures 3.3, 3.4 and 3.5). Figures 3.8, 3.8.1 
and 3.8.2 represent the results from the simulated 
model and from the comparison of the index responses 
with the DC motor speed controllers respectively. The 
observation made by comparative approach between 
the real or experimental model and the estimated model 
shows similarities concerning the index response of the 
motor for a fixed setpoint (𝜔𝑚= 91,44RPM). The fuzzy 
(see figure 3.7.1) and Anfis (see figure 3.7.2) 
controllers are robust despite a relative inaccuracy in 
steady state (non-linear DC motor speed) recorded 
around the setpoint as minor overshoots of the setpoint 
are recorded. A lower transient inaccuracy is observed 
with the real model compared to the simulated model 
(Figure 3.8).  The speed of the DC motor with the soft 
computing controllers is relatively stable and steady in 
both models (real and simulated). In contrast, the PID 
controller (Figure 3.7) is highly inaccurate despite a 
stability observed in steady state in the case of the 
experimental model. In the simulated model (Figure 
3.8), the PID controller is highly inaccurate in the 
transient state and stable in the steady state. 

  

 

 

 

a. Theoretical and experimental results obtained for an 

indexed or step setpoint 

 

 
Figure 3.7: Step response of the DC motor speed with the PID controller in 

closed loop of the real model 

 

Figure 3.7 shows the setpoint (step speed) in red fixed at 
(𝜔𝑚= 91,44RPM) and in blue the rotational speed of the DC 
motor with the PID controller. On the ordinate we have the 
amplitude or speed of rotation 𝜔𝑚 (RPM) and on the abscissa 
the time (duration of the experiment =13s). At start-up or in 
transient regime, we observe a peak in the speed of rotation of 
the DC motor (maximum speed), which translates into a 
rapidity of the speed of the DC motor with the PID controller. 
High inaccuracy (error between the setpoint and the obtained 
rotation speed) in steady state. 

 

 
Figure 3.7.1: Step response of the DC motor speed with the fuzzy controller 

in the closed loop of the real model 

 

Nota Bene: As mentioned before, the reference speed is in 
red in the figures (3.7, 3.7.1, 3.7.2) and the DC motor rotation 
speed is in blue. The ordinates represent the rotational speed 
𝜔𝑚 (RPM) and the abscissa the time (seconds) or duration of 
the experiment considered. 

Figure 3.7.1 shows a high accuracy at start-up, more 
precisely in the transient regime. Small overshoots of the DC 
motor speed are also observed, related to the inertia of the DC 
motor speed because, when the response is above the setpoint, 
the DC motor stops immediately until the response converges 
to the setpoint. The fuzzy controller remains robust. The speed 
of the DC motor is almost stable despite a relative inaccuracy 
also observed in steady state.   

The fuzzy controller (Figure 3.7.1) offers better accuracy 
than the PID controller. 
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Figure 3.7.2: Step response of the DC motor speed with the Anfis 

controller in closed loop of the real model 

 

The Anfis controller (Figure 3.7.2) provides better 
a priori accuracy than the fuzzy and PID controller in 
both transient and steady state. Stability is also 
observed in 𝜔𝑚 (RPM). 

 

 
Figure 3.8: Comparison of the index response of the DC motor 

speed in closed loop of the estimated model (with PID, fuzzy and 

Anfis controllers) 

 

Nota Bene: Figures 3.8 and 3.9 have the time 
(seconds) on the abscissa and the DC motor speed on 
the ordinate. The setpoint (𝜔𝑚= 91,44 rpm) is in blue, 
the rotation speed regulated by the PID controller is in 
purple, the one regulated by the fuzzy controller is in 
red and finally the one regulated by the neuro-fuzzy 
controller (Anfis) is in yellow. 

Figure 3.8 shows a comparison between the step 
responses from the three controllers when servo-
controlling the kinematics of the DC motor. The 
performance is summarized in Table 3.4. 

 

 
Figure 3.8.1: Comparison of the voltage variation at the output of 

each controller (PID, fuzzy, Anfis) 

 

Figure 3.8.1 shows the variation of the voltage at 
the input of each controller in the case of the estimated 
or simulated model. On the ordinate the voltage in volts 
and on the abscissa the time in seconds, in blue the 
output of the fuzzy controller, in red that of the Anfis 
controller and finally in yellow that of the PID 
controller. 

 

 
Figure 3.8.2: Comparison of the DC motor velocity error at the input of 

each controller (PID, fuzzy, Anfis) 

 

Figure 3.8.2 shows the closed loop DC motor velocity 
errors (closed loop) of each controller studied for the 
estimated and simulated model. Its errors are recorded after 
13s. In blue the curve of variation of the DC motor speed error 
at the input of the fuzzy controller, in red that at the input of 
the Anfis controller and finally in yellow that at the input of 
the PID controller. 

 

b. Theoretical and experimental results obtained for a 

square setpoint 

 

 
Figure 3.9: Comparison of the square response of the DC motor velocity in 

closed loop of the estimated model (with PID, fuzzy and Anfis controllers) 

 

Figure 3.9 shows a comparison of the square velocity 
responses of the DC motor with each controller studied. From 
our observations, a low accuracy of the transient and steady 
state velocities (rising edge or maximum set point, falling 
edge or minimum set point) of the simulated model, although 
stable, is evident. A better analysis is made via table 3.1 
concerning the performances of the various controllers. 

 

Figure 3.9.1: Comparison of the voltage variation at the output of each 

controller (PID, fuzzy, Anfis) 

 

Figure 3.9.1 shows the variation of the voltage at the input 
of each controller in the case of the estimated model. As 
before, we have: on the ordinate the voltage in volts and on 
the abscissa the time in seconds, in blue the output of the fuzzy 
controller, in red that of the Anfis controller and finally in 
yellow that of the PID controller. 
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Figure 3.9.2: Comparison of the DC motor speed error at the input 

of each controller (PID, fuzzy, Anfis) 

 

Figure 3.9.2 shows the evolution of the error of the 
DC motor rotation speed in closed loop with each 
studied controller with each controller studied. Its 
errors are recorded after 13s. The y-axis represents the 
rotational speed (RPM). 

 

 
Figure 3.10: Square response of the DC motor speed with the Anfis 

controller in closed loop of the real model   

 

Figure 3.10 shows the speed of the DC motor 
regulated by the Anfis controller with a square 
setpoint. In red the maximum amplitude speed setpoint 
(𝜔𝑚= 91,44RPM) and in blue the evolution of the DC 
motor speed. We have two transition phases (rising and 
falling edges) with relative precision and two 
permanent phases (maximum and minimum speeds) 
with overshoots and greater precision although the 
speed is non-linear. We also note a stability of the 
speed.  

 

 
Figure 3.10.1: Square response of the DC motor velocity with the 

fuzzy closed loop controller of the real model 

 

As before, Figure 3.10.1 shows the velocity of the 
DC motor with relative accuracy in steady state despite 
the observed overshoots. The velocity is stable 
although not linear. 

 

 

Figure 3.10.2: Square response of the DC motor speed with the real model 

closed loop PID controller 

 

Figure 3.10.2 shows the speed of the DC motor regulated 
by the PID controller. We can see a peak in the transient 
regime, which indicates a fast speed at start-up. However, we 
note a strong inaccuracy of the speed compared to the speed 
set point. 

 

 

c. Performance indicators 

TABLE 3.2: PERFORMANCE INDICATOR OF THE DIFFERENT IMPLEMENTED 

CONTROLLERS RESULTING FROM THE RESPONSE TO A SQUARE SET POINT OF 

THE ESTIMATED OR SIMULATED MODEL 

Controller Rise time (ms) Overshoot (%) 

PID 1199 𝟎, 𝟕𝟕𝟗 ; 𝟏, 𝟗𝟕𝟖 

Fuzzy 1368 𝟎, 𝟔𝟓𝟐 ; 𝟏, 𝟗𝟖𝟑 

Anfis 1345 𝟎, 𝟔𝟓𝟗 ; 𝟏, 𝟗𝟔𝟗 

 

From the results in Table 3.2, it can be seen that the PID 
controller is the fastest (tm-PID = 1199ms) of the three. 
However, the PID controller is the least accurate in steady 
state (rising edge or maximum speed) and more accurate than 
the fuzzy controller in steady state (falling edge or minimum 
speed). The Anfis controller offers the best accuracy (dAnfis 
= 0,659% for the rising edge and dAnfis = 1,969% for the 
falling edge) of the three. Note also that the Anfis controller is 
faster (tm-Anfis = 1345ms) than the fuzzy controller. 

TABLE 3.3: PERFORMANCE INDICATOR OF THE DIFFERENT IMPLEMENTED 

CONTROLLERS FROM THE RESPONSE TO A SQUARE SET POINT OF THE 

EXPERIMENTAL OR MEASURED MODEL 

Controller Rise time (ms) Overshoot (%) 

PID 165,340 𝟑𝟎, 𝟕𝟐𝟗 ; 𝟏𝟑, 𝟑𝟒𝟔 

Fuzzy 85,620 𝟏𝟑, 𝟏𝟎𝟕 ; 𝟐𝟎, 𝟐𝟑𝟕 

Anfis 105,054 𝟏𝟐, 𝟓𝟐𝟕 ; 𝟓, 𝟔𝟕𝟑  

 

From the results in Table 3.3, it can be seen that the fuzzy 
controller is the fastest (tm-fuzzy =85,620ms) of the three. 
However, the PID controller is the least accurate in steady 
state (rising edge or maximum speed) and more accurate than 
the fuzzy controller in steady state (falling edge or minimum 
speed). The Anfis controller offers the best accuracy (dAnfis 
= 12,527% for the rising edge and dAnfis = 5,673% for the 
falling edge) of the three. Note also that the Anfis controller is 
faster (tm-Anfis = 105,054ms) than the PID controller. 

TABLE 3.4: PERFORMANCE INDICATOR OF THE DIFFERENT IMPLEMENTED 

CONTROLLERS FROM THE STEP RESPONSE OF THE ESTIMATED OR SIMULATED 

MODEL 

Controller Rise time (ms) Overshoot (%) 

PID 2576 0,504 

Fuzzy 2121 0,501 

Anfis 2065 0,500 

 



Yannick Kenfah W. Tiawoun, Léandre Nneme Nneme 

 

58 

From the results in Table 3.4 it can be seen that the 
Anfis controller is the fastest (tm-Anfis = 2065ms) and 
most accurate (dAnfis =0,500%) of the three. 
However, the fuzzy controller is more accurate (dm-
fuzzy =0,501%) and faster (tm-fuzzy =2121ms) than 
the PID controller. 

TABLE 3.5: PERFORMANCE INDICATOR OF THE DIFFERENT 

IMPLEMENTED CONTROLLERS FROM THE STEP RESPONSE OF THE 

EXPERIMENTAL OR MEASURED MODEL 

Controller Rise time (ms) Overshoot (%) 

PID 51,314 34,269 

Fuzzy 73,789 18,843 

Anfis 43,140 12,790 

 

From the results in Table 3.5 it can be seen that the 
Anfis controller is the fastest (tm-Anfis = 43,140ms) 
and most accurate (dAnfis =12,790%) of the three. 
However, the fuzzy controller is more accurate (dm-
fuzzy =18,843%) and less fast than the PID controller 
(tm-PID = 51,314ms). 

It appears from our observations and analysis of the 
data obtained that, the soft computing controllers offer 
a better performance in the context of our work 
therefore, these controllers are more robust than that of 
the digital or classical PID controller for the control of 
non-linear systems. 

 
CONCLUSION 

The work presented in this paper focused on the 
speed control of a DC motor (FIT0521 geared motor). 
For this purpose, we designed three controllers, one of 
which is a classical controller (PID controller) and two 
others from soft computing (fuzzy controller and 
neuro-fuzzy controller of Anfis type). We then 
implemented the latter on our platform (figures : 3.1, 
3.2, 3.3, 3.4, 3.5). It is important to underline that two 
approaches were addressed in our study: the 
experimental or measured model (figures: 3.3, 3.4, 3.5) 
and the simulated or estimated model (figure 3.2). 
After analysing the tables obtained (Tables : 3.2, 3.3, 
3.4, 3.5) and observing the figures obtained (Figures : 
3.7, 3.7.1, 3.7.2, 3.8, 3.9), it is clear that the fuzzy and 
neuro-fuzzy speed controllers (Anfis) offer better 
performance (stability, accuracy and speed) than the 
PID speed controller, although in some cases they offer 
greater speed or response. It goes without saying that 
soft computing methods are more robust and efficient 
for non-linear systems.  

This performance is sufficient evidence that the 
digital PID controller is more suitable for linear 
systems but less robust for non-linear systems. The 
neuro-fuzzy controller of the Anfis type, because it 
combines the advantages of neural networks and fuzzy 
logic, and the fuzzy controller prove their effectiveness 
and are more robust and efficient for non-linear 
systems. Future work could focus on the 
implementation of soft computing methods in order to 
integrate them into path following and obstacle 
avoidance for an autonomous mobile robot such as a 
car in a dynamic or static environment. 
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