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Abstract –This work, which may be used within the 

didactic activity, presents the synthesis-based design of 

RC one-ports. The determination of the impedance 

function, followed by the Foster I and Foster II, Cauer I 

and Cauer II syntheses, leads to the achievement of four 

equivalent circuits (RC one-ports). Simulating these 

circuits, with the help of Orcad programme, we obtain 

real frequency characteristics, identical throughout the 

frequency domain, in which the analysis is carried out. 
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I. INTRODUCTION  

The work presents the synthesis-based design of 

the RC one-ports. Knowing the characteristic of the 

impedance function, the determination of the 

impedance function (real positive function) allows the 

performance of the four types of syntheses: Foster I 

and Foster II, Cauer I and Cauer II. The syntheses 

lead to the achievement of four equivalent RC one-

ports. The syntheses carried out correctly followed by 

the simulation with the help of Orcad programme, 

lead to the achievement of four frequency 

characteristics, identical throughout the frequency 

domain, in which the analysis is being carried out.  

The use of Mathcad programme allows the 

illustration, in logarithmical scale, of the real and 

ideal frequency characteristics of the impedance 

function determined. 

 

II. DETERMINATION OF THE IMPEDANCE 

FUNCTION 

 The characteristic of the impedance function is 

given in figure 1.  

As presented in figure 1, the values of the 

frequencies which are breaking points of the given 

characteristic are as follows: 

2 3 4
0.4 ; 0.6 ; 0.8 ; 1

5 5 5
     

These value shall be pole-zeros of the searched 

function. 

 

 

Figure 1. Caracteristic of the impedance function. 
 

The impedance function shall be of the following 

type: 
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This function results based on the following 

reasoning: the prescribed line segments have an 

inclination of 20dB/ dec . This inclination is 

performed with factors of the following type: 

i

s
1

s

 
 

 
. 

The characteristic, logarithmically represented, is 

zero up to the frequency s 0.4 . Starting with this 

frequency, the characteristic  decreases by 20dB/ dec  

to the frequency s 0.6 . It is obtained with the help 

of a factor of type 
"
1

s
1

s

 
 
 
 

,  "
1s 0.4 , which has to 

be at the denominator of the function (pole), in order 

to ensure the decreasing character of the function. 
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Between the frequencies s 0.6  and s 0.8  the 

characteristic is a constant. It is obtained if a factor 

'
1

s
1

s

 
 
 
 

,  '
1s 0.6  is introduced, which produces an 

ascending inclination by 20dB/ dec  and which is 

also aimed at annihilating the factor 
"
1

s
1

s

 
 
 
 

. This 

factor has to be at the numerator of the function 

(zero), in order to ensure an ascending character. 

Beginning with frequency s 0.8 , the prescribed 

frequency characteristic has a decreasing character 

again with an inclination of 20dB/ dec . This effect is 

obtained, as in the first case, introducing a factor of 

type 
"
2

s
1

s

 
 
 
 

,  "
2s 0.8  to the denominator of the 

function. 

Beginning with frequency s 1 , the frequency 

characteristic has to remain constant. This effect is 

obtained introducing the factor 
"
2

s
1

s

 
 
 
 

 to the 

numerator, which is aimed at annihilating the effect of 

the previously introduced factor. 

Finally, we obtain function  Z s  which has the 

following expression: 
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 (2)  

The value of the constant k is determined by 

examining function  Z s  at zero frequency.  

From Bode diagram, presented in figure 1, it 

results that for 0 , 
 

dB

Z 0
0dB

1k



,  Z 0 1 . 

From the relation of  Z s  it results that:  Z 0 k , 

and therefore k 1 . 

The final expression of function  Z s  shall be: 
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  (3) 

 

 

 

III. FOSTER AND CAUER SYNTHESES 

1.  Foster I Synthesis 

Foster I Synthesis of the RC one-port consists in 

developing  Z s  in elementary fractions, relation (3), 

achieving each development term through an 

elementary one-port and connecting them in series: 
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  (4) 

Calculating, we obtain: 
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Finally, we obtain: 

 
8 1 1

Z s
75 25 515

s 15 s
4 4 2

  

 

 (8) 

The diagram of Foster I-type RC one-port, 

according to the development (8), is presented in 

figure 2: 

 

 

 

 

 
Figure 2. Foster I-type RC one-port 

 

Observation: By performing the synthesis, the 

corresponding circuit will be formed of dimensionless 

norm circuit elements  k, kr c . 

 We obtain: 

 
1 2 3

1 2

8 1 2
r ; r ; r ;

15 15 5

75 25
c ; c

4 4

  

 

 (9) 

The return to the non-norm  k kR , C  is 

performed based on the relations: 

k
k k k u

u

k
k u u k k

u u

R
r ; R r R ;

R

c
c R C ; C

R

  

  


 (10) 

 For the synthesis of the one-ports, we consider as 

unit values of the elements: 

 u u u1Mrad / s; R 1K ; C 1nF      

 Calculating, we obtain the non-norm values: 
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1 1

2 2

3

R 0.533K ; C 18.75nF;

R 0.066K ; C 6.25nF;

R 0.4K

  

  

 

 (11) 

 

2. Foster II Synthesis 

Foster II Synthesis of the RC one-port consists in 

developing  Y s s  in elementary fractions, 

clarifying  Y s  in this development, achieving each 

fraction of  Y s  through elementary one-ports and 

connecting them in parallel. 

We obtain: 
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Calculating, we obtain: 
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and:  
1 1

Y s 1
16 48 1 16 16 1
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 (17) 

The diagram of Foster II-type RC one-port, 

according to the development (19), is presented in 

figure 3: 

 

 

 

 

 

 
Figure 3. Foster II-type RC one-port 

 

We obtain: 

4 5 6

3 4

16 16
r 1; r ; r ;

5 9
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  

 

 (18) 

The return to the non-norm values  k kR , C  is 

performed based on the relations (10). 

Calculating, we obtain the non-norm values: 
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3. Cauer I Synthesis 

 When the degrees differ by one unit, the synthesis 

in Cauer I scale of the real positive RC functions does 

not pose any problems, the development beginning by 

dividing the higher degree polynomial by the lower 

degree polynomial and then continuing the 

development algorithm in continuous fraction. 

For equal degrees, in the first stage we will extract 

a constant (a resistance), then in the 2nd stage we will 

extract the pole from the infinity. 

      Since only RCY  (not RCZ ) can have pole at the 

infinity, it results that the function in the 2nd stage of 

the algorithm is an admittance, therefore in the first 

stage it has to be an impedance. Thus, Cauer I 

development applies to  Z s  in this case, obtaining 

the continuous fraction: 
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 (20) 

The diagram of CAUER I-type RC one-port, 

according to the development (24), is presented in 

figure 4: 

 

 

 

 

 

 
Figure 4. Cauer I-type RC one-port 

 

We obtain:  

7 8 9

5 6

40 32 1
r ; r ; r ;

75 75 25

75 625
c ; c

16 16

  

 

  (21) 

The return to the non-norm values  k kR , C  is 

performed based on the relations (10). 

Calculating, we obtain the non-norm values: 

7 5

8 6

9

R 0.533K ; C 4.687nF;

R 0.426K ; C 39.062nF;

R 0.04K

  

  

 

 (22) 
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4. Cauer II Synthesis 

 It does not pose any problems when the real 

positive RC function presents pole or zero in the 

origin, the algorithm beginning by dividing the 

polynomials with free term by the polynomial without 

a free term, obviously the polynomials are in 

ascending order. 

 When the function does not have pole in the 

origin, in the first stage we will extract a constant, 

then in the 2nd stage we will extract the pole from the 

origin. Since only RCZ  (not RCY ) can have pole in 

the origin, it results that the function in the second 

stage of the algorithm is an impedance, therefore in 

the first stage it has to be an admittance. Therefore, 

Cauer II development applies to  Y s  in this case, 

obtaining the continuous fraction: 
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 
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 (23) 
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 (24) 

The diagram of CAUER I-type RC one-port, 

according to the development (24), is presented in 

figure 5: 

 

Figure 5. Cauer II-type RC one-port 

 

 We obtain: 

10 11 12

7 8

206 824
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 

  (25) 

The return to the non-norm values  k kR , C  is 

performed based on the relations (10). 

 Calculating, we obtain the non-norm values: 

10 7

11 8

12

R 1K ; C 1.083nF;

R 1.218K ; C 0.068nF;

R 18.311K

  

  
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 (26) 

 

 

IV. EXPERIMENTS  

The illustration of the real and ideal frequency 

characteristics of the impedance function determined 

by relation (1), using Mathcad programme, is 

presented in figure 6. 

 

 
Figure 6. The real and ideal frequency characteristics of the 

impedance function  

 

 

 To simulate Foster and Cauer-type RC one-ports 

we use Orcad programme. 

 In figure 7 we present the circuits of Foster and 

Cauer-type RC one-ports, simulated in Orcad 

 The real frequency characteristics obtained by 

simulating the circuits of Foster and Cauer-type RC 

one-ports in Orcad are presented in figure 8. 
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Figure 7.  Circuits of Foster and Cauer-type one-ports 

 

           F r e q u e n c y

1 . 0 K H z 1 0 K H z 1 0 0 K H z 1 . 0 M H z 1 0 M H z 1 0 0 M H z 1 . 0 G H z

D B ( V ( V 1 : + )  / I ( V 1 : + ) ) D B ( V ( V 2 : + ) /  I ( V 2 : + ) )

D B ( V ( V 3 : + )  / I ( V 3 : + ) ) D B ( V ( V 4 : + )  / I ( V 4 : + ) )

5 6

6 0

5 3

( 1 0 0 . 0 0 0 M , 5 4 . 5 3 5 )

( 1 . 0 0 0 0 K , 5 9 . 9 9 1 )

 
 

Figure 8.  Real frequency characteristics 

 

 

 

 

 

 

 

 

 

 

 

 

V. CONCLUSIONS  

The correct determination of the impedance 

function, followed by the correct performance of the 

Foster and Cauer syntheses lead to the achievement of 

equivalent RC one-port circuits.  

The correct simulation of these circuits in Orcad 

allows the achievement of real frequency 

characteristics, identical throughout the frequency 

domain, in which the analysis is being carried out. 

 

REFERENCES 

[1] A. Mateescu, A. Şerbănescu, N. Dumitriu, L. Anton, L. 

Stanciu, G. Alexandrescu, "Signals, Circuits and Systems", 

ISBN 973-32-0495-1, Military Publishing House, Bucharest 

1998. 

[2] Rodica-Mihaela Teodorescu, Monica-Anca Chita, "RC uniport 

analysis using virtual instrumentation", Sibiu Alma Mater 

University National Conference with International 

Participation, Section 4, Engineering sciences, Fourth edition 

25th – 27th of March, 2010. 

[3] Teodorescu, Rodica Mihaela, "Analysis and synthesis of circuits 

by engineering programming environments ", ISBN 978-606-

560-339-4, Pitesti University Publishing House 2013. 

[4] Octavian Cira, " Mathcad Lessons", ISBN 973-9443-24-9, Blue 

Publishing House Cluj-Napoca, 2000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R10 
1K 

R11 
1.218K 

R12 
18.311K 

C7 

1.083n 

C8 

0.068n 
V4 

FREQ = 50 
VAMPL = 1 
VOFF = 0 

0 

R1 

0.533K R2 

0.066K 

R3 

0.4K 

C1 

18.75n 

C2 

6.25n 

V1 

FREQ = 50 
VAMPL = 1 
VOFF = 0 

0 

R4 
1K 

R5 
3.2K 

R6 
1.777K 

C3 
0.52n 

C4 
0.562n 

V2 

FREQ = 50 
VAMPL = 1 
VOFF = 0 

0 

 Foster I Circuit 

 Foster II Circuit 

R7 

0.533K 

R8 

0.426K 

R9 

0.04K 

C5 
4.687n 

C6 
39.062n 

V3 

FREQ = 50 
VAMPL = 1 
VOFF = 0 

0 

Cauer I Circuit 

Cauer II Circuit 



Teodorescu Rodica-Mihaela 

 

52 

 

 


