
Journal of Electrical Engineering, Electronics, Control and Computer Science

JEEECCS, Volume 2, Issue 4, pages 13-20, 2016

FASharpSim: A Software Simulator for

Deterministic and Nondeterministic Finite

Automata

Georgiana-Mihaela NIȚU, Florin-Marian BÎRLEANU

Department of Electronics, Computer Science and Electrical Engineering

Faculty of Electronics, Communications and Computers, University of Pitești, Romania

georgiana_mihaela27@yahoo.com, florin.birleanu@upit.ro

Abstract – FASharpSim is a didactic simulator for

deterministic and nondeterministic finite automata

meant to be used in the laboratory classes. It allows,

before simulation, building these automata in an

intuitive easy manner, by means of a simple friendly

graphical interface. This application explains the

concept of finite automaton by clearly simulating it. The

paper describes the application development, the

algorithms which provide its functionality (compilation,

simulation), as well as some eloquent examples of

designing and simulating some automata using

FASharpSim. The purpose of the simulator is to clearly

illustrate the notion of finite automaton and draw a

sharp line between the two types of finite automata:

deterministic and nondeterministic.

Keywords – deterministic finite automaton (DFA);

nondeterministic finite automaton (NFA); ε-transitions;

automata simulation.

I. INTRODUCTION

Finite automata have represented the first
computing machines and have a crucial role in
computer science and its evolution as we know it. Can
we imagine our computers without finite automata?
They are an essential model for hardware and software
components and have numerous applications in
nowadays computing activity: compiling a program,
searching for text in documents, designing and
validating digital circuits. The purpose of studying
formal languages and automata is for the students and
interested readers to get the feel of programming
principles and how it works. Finite automata can be
seen as minimalistic versions of programming
languages, defined by a rigorous set of symbols and
laws that dictate how to combine the symbols.

How is it possible to combine symbols in order to
create valid words? The paper answers this question
by introducing a compact simulation application for
finite automata, FASharpSim, which depicts how
these behave, how they can impose some restrictions
and allow only a precise set of rules in order to obtain
the required output (in this case the output being a yes
(input word accepted) or a no (input word not
accepted)). The simulator implements some concise
algorithms for clarifying how an automaton processes
input and gives a verdict about its category: accepted,
or not accepted.

Over time, finite automata have been simulated
using different methods, each of them bringing its
valuable contribution to their understanding. In order
to design and implement the simulator presented in
this paper, a theoretical research has been undertaken
by employing the text books [1], [2] and [3].
Afterwards, a study regarding the state of the art in
simulating finite automata was performed. Such
applications have been developed as desktop
applications [4], [5], [6], as well as web applications
[7], [8]. In [9] the author compares various simulators
by presenting their relevant features. The novelty of
our application is that it is dedicated exclusively to
finite automata and clearly highlights the simulation
steps (and also gives an answer to the user when
simulation is complete).

The paper presents the key features of the
simulator (Section II), how an automaton is seen by
the simulator (Section III.A), how it gets verified after
building it (Section III.B), what type of automaton we
have built (Section III.C), how an input word finds its
way to acceptance or not by using a step by step
approach (Section III.D) and how an automaton gets
saved to disk (Section III.E). Additionally, some
examples of using the application are shown in Section
IV and conclusions regarding the simulator and its
usefulness are drawn in the last section.

II. INTERFACE AND FUNCTIONALITIES

FASharpSim is implemented in C# and allows
editing and simulating Deterministic (DFAs) and
Nondeterministic Finite Automata (NFAs), including
ε-NFAs. Its friendly graphical user interface comes
with a series of buttons and menus meant to provide
the user with a pleasant experience in creating the
desired automaton, by easily choosing the states and
transitions from a tool bar and dropping them on a
canvas.

The key features of the simulator are: toolbar with
states and transitions, buttons for compiling the
automaton, for step by step and automatic simulation,
for pausing the continuous simulation, a field for the
input word, a console for visualizing all current
operations and buttons for saving, exporting and
importing an automaton for further editing or for a
new simulation. Fig. 1 shows the graphical user
interface of the application.

Georgiana-Mihaela NIȚU, Florin-Marian BÎRLEANU

14

Figure 1. FASharpSim graphical user interface.

III. ALGORITHMS AND IMPLEMENTATION

All the functionalities described in the previous
section are based on some key algorithms that build
the behavior of our application. All the states of an
automaton being edited are kept in a list. Also, a
separate list keeps track of the transitions for a specific
automaton. Both lists are used in the compilation and
simulation algorithms, as described below. Besides
algorithms, this section describes how states and
transitions are represented in the computer memory
and how transition curves are painted on the canvas.

A. Memory representation of the finite automaton

The automata build with the simulator are
transitions graphs, where nodes are states and arcs are
labeled with input symbols, denoting transitions. Yet,
what the computer "sees" is quite different from what
the user builds: the simulator models the components
of the automaton as UserControl objects that
communicate with each other.Each state of the
automaton is a UserControl, on which a circle is
painted. It contains a TextBox component that allows
the user to input a name for that particular state and a
Label component for displaying that name. The main
properties of a State are: Name, Index (in a list of
states), and the boolean values Accepting and Start.
Depending on the combination of the last two
properties, we can build four types of states: start
accepting state, start nonaccepting state, accepting and
nonstarting state, and, lastly, non-accepting and
nonstarting state. Likewise, the transitions are
modeled as a UserControl containing a TextBox for
inputting the input symbols that cause the transition to
activate, as well as a Label for displaying those
symbols. The most important members in the
Transition class are IndexStartState and
IndexStopState, i.e. the two indexes defining in fact

the transition. To complete the class, we also use
StartName, StopName and GetSymbolList, which
memorize the name of start and finish states, and,
respectively, the transition symbols.

The UserControl is added on top a Bézier curve,
representing the transition arc. This Bézier curve is
drawn between the start and finish state that define the
transition. The starting point of the curve is the centre
of the start state. We recall that the states are circles
painted on a UserControl. Let S1 be the start state and
S2 the finish state, P1(x1,y1) the centre of the start state
and P2(x2,y2)the centre of the finish state. The end

point for the curve, (), is the intersection of

the vector

 with the circle that represents the stop
state, as shown in Fig. 2.

Figure 2. Computing the coordinates for the end point of the Bézier
curve that represents a transition.

The coordinates of P2(x2,y2) are computed using
(1).

 (

√() ()
) ()

 (

√() ()
)()

()

Besides the start and end points, a Bézier curve
needs a control point. Although usually two control

FASharpSim: A Software Simulator for Deterministic and Nondeterministic Finite Automata

15

points are used to draw Béziers, we choose only one
(multiple) point. Fig. 3 illustrates this point, PC(xC,yC),
positioned at a distance d = R from the center, PM of

the vector

 and rotated with 90 degrees.

Figure 3. The control point for the Bézier curve.

The control point coordinates are computed using
(2), where xM and yM are the coordinates of the
midpoint of segment P1P2.

 ()

√() ()

 ()

√() ()

()

In order for the transition to be complete, it is
needed to have the coordinates for the point where the
label displaying the symbols is positioned (outside of
the curve). Fig. 4 depicts the point ()
representing the top-left coordinates of the Label
component containing the symbols. To add symbols
over the transition arc, we chose these to be painted at

a distance

, fromthe vector

 , where R is

the state radius, l is the Label height and L the Label
width, as we can notice in Fig. 4.

Figure 4. The top-left point for the transition label.

The point where drawing begins is () Its
coordinates are computed relatively to the

point () , whose coordinates, in turn, are

described by (3).

 ()

√() ()

 ()

√() ()

()

On the Ox axis, we choose

, and for the

Oy axis, we have two cases:

 If the start state is positioned to the left of the
finish state, we coose .

 If the start state is positioned to the right of the

finish state, we fix

.

Equations (1), (2) and (3) are used in the Paint
method associated to the PictureBox where the

automaton is drawn. We use the C# function
DrawBezier to paint the curves.

B. Compiling an automaton

Before simulation, it is needed to know if the
automaton that was built has some elements that make
it a valid automaton: a single starting state, all states
have a name and there is at least one accepting state.
The function that implements the compilation of an
automaton is illustrated by Algorithm 1.

Algorithm 1: Compiling an automaton.

1: function COMPILE

2: counterStart ← 0

3: okName ← true

4: if length(stateList) > 0

and length(transitionList) > 0 then

5: for each state s în stateList do

6: if s.Start = true then

7: counterStart ← counterStart + 1

8: if s.Name = ”” (empty string) then

9: okName ← false

10: if okName = false then

11: return "You did not name all the states!"

12: if counterStart ≠ 1 then

13: return "No start state or too many for the built

automaton!”

14: if stateList.Any(st => st.Accepting) = false then

15: return "No accepting state for the automaton!"

16: return "Success!"

17: return "The automaton is not built!"

The application searches in the state list a state

with the property start = true. When this particular

state is found, a counter gets incremented. If counter≠
1, an error is thrown: "No starting state or too many
starting states for this automaton". Then, the algorithm
looks for an empty string in the list named states. If at
least one is found, the error "You did not name all the
states" is raised. Similarly, states with the property
accepting = true are searched. If none is found, the
user gets the error "No accepting state for your
automaton". Finally, if the automaton passes the three
tests, it is considered correct and ready for simulation.
Lines 4-9 check if there is only one start state and if all
the states are named. Lines 10-13 return the
corresponding errors. Line 14 is a Linq expression that
searches in the state list at least one accepting state and
if it finds one, it returns true. Hence, if the expression
is false, line 15 gets executed. Line 16 signals a correct
compilation. If neither states nor transitions are built
by the user (i.e., the stateList or the transitionList is
empty), the compilation fails with the error in line 17.

C. Deterministic or not?

At the compilation stage, the user is informed

about the determinism of the automaton that was

built. The algorithm for this builds, for each state, a

list containing the symbols of the transitions starting

from that state. If this list is similar to the automaton

alphabet, then the automaton is deterministic.

Otherwise, it is nondeterministic. An ε-transitions

automaton is nondeterministic. An example

Georgiana-Mihaela NIȚU, Florin-Marian BÎRLEANU 16

illustrating the idea of the algorithm is shown in Fig.

5.

In Fig. 5a, the alphabet of the ε-NFA is Σ = {ε, i,

n, t, f}. Because (q0, q1) and (q0, q4) are ε-

transitions, the algorithm will tell the user that the

automaton is nondeterministic. Following Fig. 5b, Σ =

{0, 1}. For each state in the automaton, q0, q1, q2, q3,

the symbols from the transition that starts with that

state are {0, 1}. We notice that they form the same set

as Σ. Therefore, the automaton is deterministic.

Lastly, in Fig. 5c, the alphabet is Σ = {0, 1}. If we

analyze state q0 and the transitions that leave from it,

(q0, q0) and (q0, q1), we see that the list of symbols

for the state q0 is {0,0,1}, which does not equal Σ.

Also, we can observe that starting from q0, the

automaton reaches two states simultaneously by

following the symbol 0: q0 and q1. This leads to a

nondeterministic automaton.

(a) ε-NFA accepting the words if and int

(b) DFA accepting words formed with symbols 0 and 1 having as

length a multiple of 3

(c) NFA accepting words formed with 0 and 1 and ending in 01.

Figure 5. Examples of automata for illustrating the idea of the

determinism checking algorithm.

D. Method for simulating an automaton

Simulating an automaton means starting from the
start state and analyzing one by one the input symbols
until the input word ends, in order to obtain an answer
regarding whether the word is accepted or not. If this
path ends in an accepting state, the word belongs to
the language described by the automaton. Otherwise, it
gets rejected. The simulation algorithm considers the
DFAs as a particular case of NFAs, where only one
next state is allowed for any state for a certain input
symbol. The algorithm uses two boolean arrays to
mark the current state and the next state. The main
steps for the simulation algorithm are:

a) Find the starting state in the list of states and
get its index, start. Mark the start state as
current: here[start] ← true;

b) Compute the ε-closure for the start state –
find the transition leaving the start state and,

if they contain ε symbol, mark the end state
as current;

c) Compute the ε-closure for each state s from
the state list: here[indexOf(s)] ← true;

d) If we are in a certain state and the input
symbol equals the one on a transition from
that state, mark the next state:
willBeHere[indexOf(s)] ← true;

e) If the input string has ended and the
automaton reached an accepting state, the
string is accepted.

An example of how the algorithm works is
provided in Fig. 6. Any finite automaton can be
simulated using the method presented in this section.
The automaton in Fig. 6 accepts the words if and int.
Simulation takes place in steps (a), (b) and (c). At step
(a), input symbol i causes the automaton to take ε-
transitions (q0,q1) and (q0,q4). The ε-closure is
computed for the start state. The current state is,
therefore, {q0, q1, q4}. The algorithm searches the
transition list and finds two transitions corresponding
to input i: (q1, q2) and (q4, q5). The automaton takes
these two transitions and the next state is {q2, q5}.
After each step, the next state becomes the current
state. At step (b), symbol n appears on the input, the
algorithm finds the corresponding transition, (q5, q6),
and the automaton reaches state q6. Step (c): the
automaton takes the transition corresponding to t, (q6,
q7), and reaches state q7. The input int ends and the
simulator checks if the automaton remained in an
accepting state. State q7 is indeed accepting and the
application tells the user that the input string int is
accepted by the automaton.

E. Saving an automaton to the disk

The simulator saves a built automaton as an XML

file, which contains the set of states, stored in the

node <states> and the transition set as <transitions>.

For each state, a node <state> is build and the

following information is saved for it: name, index, if

it is a start state or not, if it is accepting or not, the

screen location and the color. The <state> node is

parent to all the nodes mentioned. For instance, the

<state> node for an accepting state, nonstarting, blue,

with top-left coordinate at point P(494,222) looks as

in Listing 1.

Similarly to states, the transitions are saved in the

same manner: each has a corresponding node

contained in one <transitions> node. For each

transition, the simulator saves: start state index, stop

state index, the set of symbols and the color.

Listing 1: The XML format for a state.

<state>

<name>q3</name>

<idx>1</idx>

<start>false</start>

<accepting>true</accepting>

<location>{X=494,Y=222}</location>

<color>−12490271</color>

</state>

Listing 2: The XML format for a transition.

<transition>

FASharpSim: A Software Simulator for Deterministic and Nondeterministic Finite Automata

17

<idxStart>1</idxStart>

<idxStop>3</idxStop>

<color>−12490271</color>

<symbols>a,b</symbols>

</transition>

A <transition> node for a transition starting from

state with index 1 and ending in state with index 3,

blue, activating on inputs a and b is shown in Listing

2.For building the XML file, we used the Linq library

and XDocument and XElement objects.

IV. TESTING AND RESULTS

In order to fully grasp the insights of how finite
automata work and how the application tackles them,
this section shows the results of a series of tests on
some automata by using Algorithm 1 and the
simulation method described in Section III.D on two
examples designed with the simulator.

Example 1. Let there be a deterministic automaton
which accepts the words formed with a and bso that
no input symbol appears consecutively more than two
times. It was designed with FASharpSim and its image
is shown in Fig. 7. The simulation steps for an
accepted input word are shown in Fig. 8.

Figure 6.The idea of the simulation algorithm.

Figure 7. DFA accepting words formed with a and b having no more than
two identical adjacent symbols.

Example 2. Let there be the following ε-NFA, which

accepts the language of words formed with a and bso

that they have at least an a on the last four positions.

If a string has less than 4 characters, it must contain at

least an a on the last four positions in order to be

accepted.

Fig. 9 depicts the automaton that accepts the

language specified in this second example. We

simulate this automaton for an input word that does

not correspond to its language, as it can be noticed in

Fig. 10. Simulation steps are as follows: after the user

compiles the automaton (Fig. 10a), the input symbol b

is processed and the automaton reaches state B (Fig.

10b). At Fig. 10c, an a causes the automaton to

remain in B and also pass to C. In Fig. 10d, at the next

step, the algorithm computes the ε-closure for state C

and the automaton reaches state G, following the ε-

transition (C, G). Afterwards, it reads from the input

symbol b and goes to states D and B. Therefore, at

step 3, the automaton finds itself in states {B,D,G}.

At step 4 (Fig. 10e), the ε-closure is computed for

state D and the automaton passes to state H. Then it

goes to states E and B after processing input b. Step 5

(Fig. 10f): The simulator computes the ε-closure for

state E and leads the automaton to state I. After

reading another b, it reaches states B and F. The last

step, i.e. step 6, described in Fig. 10g: the ε-closure is

computed for state F and the automaton moves to

state J. It also stays in B after looking the symbol b. In

Fig. 10h, the last step of the simulation is performed:

the algorithm marks state J as not valid because there

are no more input symbols. Hence, the automaton

stays in the nonaccepting state B and the user is

shown the message "The string is not accepted".

Georgiana-Mihaela NIȚU, Florin-Marian BÎRLEANU 18

Figure 8. Simulating the automaton from Example 1, Fig. 7, for the accepted input word abaa.

Figure 9. ε-NFA accepting words formed with a and b having at least an a on last 4 positions.

(a) The user is announced about successfully compiling a deterministic
automaton.

(b) Step 1: Input symbol a drives the automaton to state B.

(c) Step 2: The automaton reaches state C after reading input symbol b. (d) Step 3: An a appears on the input and the automaton goes to state B.

(e) Step 4: The automaton sees another a and passes to state F. (f) Because F is an accepting state, the user is announced that the word
abaa is accepted.

FASharpSim: A Software Simulator for Deterministic and Nondeterministic Finite Automata

19

(a) The user is announced about successfully compiling a

nondeterministic automaton.

(b) Step 1: The automaton reads input b and passes to

state B.

(c) Step 2: The automaton reaches states C and B

after processing symbol a.

(d) Step 3: A b appears on the input and

the automaton goes to states D, B and G.

(e) Step 4: The automaton sees another b and

passes to states E, B and H.

(f) Step 5: Another b leads the automaton to

states F, B and I.

(g) Step 6: The automaton sees the last symbol, b, and passes to

states J and B.

(h) The automaton leaves state J. The user is announced the string

babbbb is not accepted.

Figure 10. Simulation steps for the automaton shown in Fig. 9.

Georgiana-Mihaela NIȚU, Florin-Marian BÎRLEANU

20

CONCLUSION

We introduced in this paper a simulator for

deterministic and nondeterministic finite automata

focused on their functionality in order to outline their

manner of operating and to simplify their design in

the laboratory classes, the emphasis being laid on

their understanding. Likewise, we depicted the

algorithms on which our application is based and

discussed details about implementation. The

application provides the user with an answer at the

end of the simulation, after the entire input symbols

were consumed. This simulator can be seen as a light

tool to verify correctness of the built automata, to test

and closely observe the evolution of states with

respect to the input. During simulation, the current

transition is highlighted in a random color and the

current state becomes red in order for the user to

clearly notice the correspondence between the

automaton answer and the current input symbol.

Pointing out this correspondence was the main

purpose of the application.

The simulator can be extended by adding new

functionalities: a mechanism for minimizing DFAs,

the possibility of conversion from NFA to DFA and

from ε-NFA to regular expressions and the other way

round. If we consider the interface, this could be

enhanced by adding a stop button for the continuous

simulation (practically, that would reset the

simulation) and a button for stepping backwards into

the simulation. Also, good features would be: to move

more states at a time on the canvas and to be able to

add symbols on the transitions in this manner: a..z

(i.e., a range of symbols, in this case all the English

letters) when it is necessary.

REFERENCES

[1] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to
Automata Theory, Languages, and Computation, Second
Edition. Addison-Wesley, 2001.

[2] P. Linz, An Introduction to Formal Languages and Automata,
Third Edition. Jones and Bartlett Publishers, 2001.

[3] G. V. Orman, Limbaje Formale.Bucureşti: Editura tehnică,
1982.

[4] T. M. White, T. P. Way, jFAST: A Java Finite Automata
Simulation, Applied Computing Technology Laboratory,
Department of Computing Sciences, Villanova University, In
Thirty-seventh SIGCSE Technical Symposium on Computer
Science Education (2006), 384–388, vol. 38.

[5] S. H. Rodger, T. W. Finley, JFLAP: An Interactive Formal
Languages and Automata Package. Jones and Bartlett
Publishers, 2006.

[6] C. Burch, "Automaton Simulator" (version 1.2),
http://www.cburch.com/proj/autosim/, 2008.

[7] I. Zuzak, and V. Jankovic, "FSM simulation",
http://ivanzuzak.info/noam/webapps/fsm_simulator/, 2015.

[8] C. Burch, "Finite automaton simulation",
http://www.cs.cmu.edu/~cburch/survey/dfa/.

[9] T. Fransson, Simulators for formal languages, automata and
theory of computation with focus on JFLAP. B.Sc. Thesis,
Mälardalen University, Västerås, Sweden, 2013.

