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Abstract – FASharpSim is a didactic simulator for 

deterministic and nondeterministic finite automata 

meant to be used in the laboratory classes. It allows, 

before simulation, building these automata in an 

intuitive easy manner, by means of a simple friendly 

graphical interface. This application explains the 

concept of finite automaton by clearly simulating it. The 

paper describes the application development, the 

algorithms which provide its functionality (compilation, 

simulation), as well as some eloquent examples of 

designing and simulating some automata using 

FASharpSim. The purpose of the simulator is to clearly 

illustrate the notion of finite automaton and draw a 

sharp line between the two types of finite automata: 

deterministic and nondeterministic. 
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nondeterministic finite automaton (NFA); ε-transitions; 
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I. INTRODUCTION 

Finite automata have represented the first 
computing machines and have a crucial role in 
computer science and its evolution as we know it. Can 
we imagine our computers without finite automata? 
They are an essential model for hardware and software 
components and have numerous applications in 
nowadays computing activity: compiling a program, 
searching for text in documents, designing and 
validating digital circuits. The purpose of studying 
formal languages and automata is for the students and 
interested readers to get the feel of programming 
principles and how it works. Finite automata can be 
seen as minimalistic versions of programming 
languages, defined by a rigorous set of symbols and 
laws that dictate how to combine the symbols.  

How is it possible to combine symbols in order to 
create valid words? The paper answers this question 
by introducing a compact simulation application for 
finite automata, FASharpSim, which depicts how 
these behave, how they can impose some restrictions 
and allow only a precise set of rules in order to obtain 
the required output (in this case the output being a yes 
(input word accepted) or a no (input word not 
accepted)). The simulator implements some concise 
algorithms for clarifying how an automaton processes 
input and gives a verdict about its category: accepted, 
or not accepted. 

Over time, finite automata have been simulated 
using different methods, each of them bringing its 
valuable contribution to their understanding. In order 
to design and implement the simulator presented in 
this paper, a theoretical research has been undertaken 
by employing the text books [1], [2] and [3]. 
Afterwards, a study regarding the state of the art in 
simulating finite automata was performed. Such 
applications have been developed as desktop 
applications [4], [5], [6], as well as web applications 
[7], [8]. In [9] the author compares various simulators 
by presenting their relevant features. The novelty of 
our application is that it is dedicated exclusively to 
finite automata and clearly highlights the simulation 
steps (and also gives an answer to the user when 
simulation is complete). 

The paper presents the key features of the 
simulator (Section II), how an automaton is seen by 
the simulator (Section III.A), how it gets verified after 
building it (Section III.B), what type of automaton we 
have built (Section III.C), how an input word finds its 
way to acceptance or not by using a step by step 
approach (Section III.D) and how an automaton gets 
saved to disk (Section III.E). Additionally, some 
examples of using the application are shown in Section 
IV and conclusions regarding the simulator and its 
usefulness are drawn in the last section. 

II. INTERFACE AND FUNCTIONALITIES 

FASharpSim is implemented in C# and allows 
editing and simulating Deterministic (DFAs) and 
Nondeterministic Finite Automata (NFAs), including 
ε-NFAs. Its friendly graphical user interface comes 
with a series of buttons and menus meant to provide 
the user with a pleasant experience in creating the 
desired automaton, by easily choosing the states and 
transitions from a tool bar and dropping them on a 
canvas. 

The key features of the simulator are: toolbar with 
states and transitions, buttons for compiling the 
automaton, for step by step and automatic simulation, 
for pausing the continuous simulation, a field for the 
input word, a console for visualizing all current 
operations and buttons for saving, exporting and 
importing an automaton for further editing or for a 
new simulation. Fig. 1 shows the graphical user 
interface of the application.   
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Figure 1. FASharpSim graphical user interface.

III. ALGORITHMS AND IMPLEMENTATION 

All the functionalities described in the previous 
section are based on some key algorithms that build 
the behavior of our application. All the states of an 
automaton being edited are kept in a list. Also, a 
separate list keeps track of the transitions for a specific 
automaton. Both lists are used in the compilation and 
simulation algorithms, as described below. Besides 
algorithms, this section describes how states and 
transitions are represented in the computer memory 
and how transition curves are painted on the canvas. 

A. Memory representation of the finite automaton 

The automata build with the simulator are 
transitions graphs, where nodes are states and arcs are 
labeled with input symbols, denoting transitions. Yet, 
what the computer "sees" is quite different from what 
the user builds: the simulator models the components 
of the automaton as UserControl objects that 
communicate with each other.Each state of the 
automaton is a UserControl, on which a circle is 
painted. It contains a TextBox component that allows 
the user to input a name for that particular state and a 
Label component for displaying that name. The main 
properties of a State are: Name, Index (in a list of 
states), and the boolean values Accepting and Start. 
Depending on the combination of the last two 
properties, we can build four types of states: start 
accepting state, start nonaccepting state, accepting and 
nonstarting state, and, lastly, non-accepting and 
nonstarting state. Likewise, the transitions are 
modeled as a UserControl containing a TextBox for 
inputting the input symbols that cause the transition to 
activate, as well as a Label for displaying those 
symbols. The most important members in the 
Transition class are IndexStartState and 
IndexStopState, i.e. the two indexes defining in fact 

the transition. To complete the class, we also use 
StartName, StopName and GetSymbolList, which 
memorize the name of start and finish states, and, 
respectively, the transition symbols.  

The UserControl is added on top a Bézier curve, 
representing the transition arc. This Bézier curve is 
drawn between the start and finish state that define the 
transition. The starting point of the curve is the centre 
of the start state. We recall that the states are circles 
painted on a UserControl. Let S1 be the start state and 
S2 the finish state, P1(x1,y1) the centre of the start state 
and P2(x2,y2)the centre of the finish state. The end 

point for the curve,    (       ), is the intersection of 

the vector    
 

  with the circle that represents the stop 
state, as shown in Fig. 2. 

 

Figure 2. Computing the coordinates for the end point of the Bézier 
curve that represents a transition. 

The coordinates of P2(x2,y2) are computed using 
(1).  
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Besides the start and end points, a Bézier curve 
needs a control point. Although usually two control 
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points are used to draw Béziers, we choose only one 
(multiple) point. Fig. 3 illustrates this point, PC(xC,yC), 
positioned at a distance d = R from the center, PM of 

the vector    
 

  and rotated with 90 degrees. 

 

Figure 3. The control point for the Bézier curve. 

The control point coordinates are computed using 
(2), where xM and yM are the coordinates of the 
midpoint of segment P1P2.  
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In order for the transition to be complete, it is 
needed to have the coordinates for the point where the 
label displaying the symbols is positioned (outside of 
the curve). Fig. 4 depicts the point   (     ) 
representing the top-left coordinates of the Label 
component containing the symbols. To add symbols 
over the transition arc, we chose these to be painted at 

a distance     
 

 
, fromthe vector   

 

 , where R is 

the state radius, l is the Label height and L the Label 
width, as we can notice in Fig. 4.  

 

Figure 4. The top-left point for the transition label. 

The point where drawing begins is   (     )  Its 
coordinates are computed relatively to the 

point   (     ) , whose coordinates, in turn, are 

described by (3). 
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On the Ox axis, we choose      
 

 
, and for the 

Oy axis, we have two cases: 

 If the start state is positioned to the left of the 
finish state, we coose      . 

 If the start state is positioned to the right of the 

finish state, we fix      
 

 
. 

Equations (1), (2) and (3) are used in the Paint 
method associated to the PictureBox where the 

automaton is drawn. We use the C# function 
DrawBezier to paint the curves. 

B. Compiling an automaton 

Before simulation, it is needed to know if the 
automaton that was built has some elements that make 
it a valid automaton: a single starting state, all states 
have a name and there is at least one accepting state. 
The function that implements the compilation of an 
automaton is illustrated by Algorithm 1. 

Algorithm 1: Compiling an automaton. 

 

1:  function COMPILE 

2:  counterStart ← 0 

3:  okName ← true 

4:  if length(stateList) > 0 

and length(transitionList) > 0 then 

5:  for each state s în stateList do 

6:       if s.Start = true then 

7:            counterStart ← counterStart + 1 

8:       if s.Name = ”” (empty string) then 

9:            okName ← false 

10:  if okName = false then 

11:     return "You did not name all the states!" 

12:  if counterStart ≠ 1 then 

13:     return "No start state or too many for the built 

automaton!” 

14:  if stateList.Any(st => st.Accepting) = false then 

15:      return "No accepting state for the automaton!" 

16:  return "Success!" 

17:  return "The automaton is not built!" 

 
The application searches in the state list a state 

with the property start = true. When this particular 

state is found, a counter gets incremented. If counter≠
1, an error is thrown: "No starting state or too many 
starting states for this automaton". Then, the algorithm 
looks for an empty string in the list named states. If at 
least one is found, the error "You did not name all the 
states" is raised. Similarly, states with the property 
accepting = true are searched. If none is found, the 
user gets the error "No accepting state for your 
automaton". Finally, if the automaton passes the three 
tests, it is considered correct and ready for simulation. 
Lines 4-9 check if there is only one start state and if all 
the states are named. Lines 10-13 return the 
corresponding errors. Line 14 is a Linq expression that 
searches in the state list at least one accepting state and 
if it finds one, it returns true. Hence, if the expression 
is false, line 15 gets executed. Line 16 signals a correct 
compilation. If neither states nor transitions are built 
by the user (i.e., the stateList or the transitionList is 
empty), the compilation fails with the error in line 17. 

C. Deterministic or not? 

At the compilation stage, the user is informed 

about the determinism of the automaton that was 

built. The algorithm for this builds, for each state, a 

list containing the symbols of the transitions starting 

from that state. If this list is similar to the automaton 

alphabet, then the automaton is deterministic. 

Otherwise, it is nondeterministic. An ε-transitions 

automaton is nondeterministic. An example 
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illustrating the idea of the algorithm is shown in Fig. 

5. 

In Fig. 5a, the alphabet of the ε-NFA is Σ = {ε, i, 

n, t, f}. Because (q0, q1) and (q0, q4) are ε-

transitions, the algorithm will tell the user that the 

automaton is nondeterministic. Following Fig. 5b, Σ = 

{0, 1}. For each state in the automaton, q0, q1, q2, q3, 

the symbols from the transition that starts with that 

state are {0, 1}. We notice that they form the same set 

as Σ. Therefore, the automaton is deterministic. 

Lastly, in Fig. 5c, the alphabet is Σ = {0, 1}. If we 

analyze state q0 and the transitions that leave from it, 

(q0, q0) and (q0, q1), we see that the list of symbols 

for the state q0 is {0,0,1}, which does not equal Σ. 

Also, we can observe that starting from q0, the 

automaton reaches two states simultaneously by 

following the symbol 0: q0 and q1. This leads to a 

nondeterministic automaton. 

 

 

(a) ε-NFA accepting the words if and int 

 

(b) DFA accepting words formed with symbols 0 and 1 having as 

length a multiple of 3 

(c) NFA accepting words formed with 0 and 1 and ending in 01. 

 
Figure 5. Examples of automata for illustrating the idea of the 

determinism checking algorithm. 

D. Method for simulating an automaton 

Simulating an automaton means starting from the 
start state and analyzing one by one the input symbols 
until the input word ends, in order to obtain an answer 
regarding whether the word is accepted or not. If this 
path ends in an accepting state, the word belongs to 
the language described by the automaton. Otherwise, it 
gets rejected. The simulation algorithm considers the 
DFAs as a particular case of NFAs, where only one 
next state is allowed for any state for a certain input 
symbol. The algorithm uses two boolean arrays to 
mark the current state and the next state. The main 
steps for the simulation algorithm are: 

a) Find the starting state in the list of states and 
get its index, start. Mark the start state as 
current:  here[start] ← true; 

b) Compute the ε-closure for the start state – 
find the transition leaving the start state and, 

if they contain ε symbol, mark the end state 
as current; 

c) Compute the ε-closure for each state s from 
the state list: here[indexOf(s)] ← true; 

d) If we are in a certain state and the input 
symbol equals the one on a transition from 
that state, mark the next state: 
willBeHere[indexOf(s)] ← true; 

e) If the input string has ended and the 
automaton reached an accepting state, the 
string is accepted. 

An example of how the algorithm works is 
provided in Fig. 6. Any finite automaton can be 
simulated using the method presented in this section. 
The automaton in Fig. 6 accepts the words if and int. 
Simulation takes place in steps (a), (b) and (c). At step 
(a), input symbol i causes the automaton to take ε-
transitions (q0,q1) and (q0,q4). The ε-closure is 
computed for the start state. The current state is, 
therefore, {q0, q1, q4}. The algorithm searches the 
transition list and finds two transitions corresponding 
to input i: (q1, q2) and (q4, q5). The automaton takes 
these two transitions and the next state is {q2, q5}. 
After each step, the next state becomes the current 
state. At step (b), symbol n appears on the input, the 
algorithm finds the corresponding transition, (q5, q6), 
and the automaton reaches state q6. Step (c): the 
automaton takes the transition corresponding to t, (q6, 
q7), and reaches state q7. The input int ends and the 
simulator checks if the automaton remained in an 
accepting state. State q7 is indeed accepting and the 
application tells the user that the input string int is 
accepted by the automaton. 

E. Saving an automaton to the disk 

The simulator saves a built automaton as an XML 

file, which contains the set of states, stored in the 

node <states> and the transition set as <transitions>. 

For each state, a node <state> is build and the 

following information is saved for it: name, index, if 

it is a start state or not, if it is accepting or not, the 

screen location and the color. The <state> node is 

parent to all the nodes mentioned. For instance, the 

<state> node for an accepting state, nonstarting, blue, 

with top-left coordinate at point P(494,222) looks as 

in Listing 1. 

Similarly to states, the transitions are saved in the 

same manner: each has a corresponding node 

contained in one <transitions> node. For each 

transition, the simulator saves: start state index, stop 

state index, the set of symbols and the color. 
 

Listing 1: The XML format for a state. 

<state> 

<name>q3</name> 

<idx>1</idx> 

<start>false</start> 

<accepting>true</accepting> 

<location>{X=494,Y=222}</location> 

<color>−12490271</color> 

</state> 

 
Listing 2: The XML format for a transition. 

<transition> 
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<idxStart>1</idxStart> 

<idxStop>3</idxStop> 

<color>−12490271</color> 

<symbols>a,b</symbols> 

</transition> 

 

A <transition> node for a transition starting from 

state with index 1 and ending in state with index 3, 

blue, activating on inputs a and b is shown in Listing 

2.For building the XML file, we used the Linq library 

and XDocument and XElement objects. 

IV. TESTING AND RESULTS 

In order to fully grasp the insights of how finite 
automata work and how the application tackles them, 
this section shows the results of a series of tests on 
some automata by using Algorithm 1 and the 
simulation method described in Section III.D on two 
examples designed with the simulator. 

Example 1. Let there be a deterministic automaton 
which accepts the words formed with a and bso that 
no input symbol appears consecutively more than two 
times. It was designed with FASharpSim and its image 
is shown in Fig. 7. The simulation steps for an 
accepted input word are shown in Fig. 8. 

 

Figure 6.The idea of the simulation algorithm. 

 

Figure 7. DFA accepting words formed with a and b having no more than 
two identical adjacent symbols. 

Example 2. Let there be the following ε-NFA, which 

accepts the language of words formed with a and bso 

that they have at least an a on the last four positions. 

If a string has less than 4 characters, it must contain at 

least an a on the last four positions in order to be 

accepted. 

Fig. 9 depicts the automaton that accepts the 

language specified in this second example. We 

simulate this automaton for an input word that does 

not correspond to its language, as it can be noticed in 

Fig. 10. Simulation steps are as follows: after the user 

compiles the automaton (Fig. 10a), the input symbol b 

is processed and the automaton reaches state B (Fig. 

10b). At Fig. 10c, an a causes the automaton to 

remain in B and also pass to C. In Fig. 10d, at the next 

step, the algorithm computes the ε-closure for state C 

and the automaton reaches state G, following the ε-

transition (C, G). Afterwards, it reads from the input 

symbol b and goes to states D and B. Therefore, at 

step 3, the automaton finds itself in states {B,D,G}. 

At step 4 (Fig. 10e), the ε-closure is computed for 

state D and the automaton passes to state H. Then it 

goes to states E and B after processing input b. Step 5 

(Fig. 10f): The simulator computes the ε-closure for 

state E and leads the automaton to state I. After 

reading another b, it reaches states B and F. The last 

step, i.e. step 6, described in Fig. 10g: the ε-closure is 

computed for state F and the automaton moves to 

state J. It also stays in B after looking the symbol b. In 

Fig. 10h, the last step of the simulation is performed: 

the algorithm marks state J as not valid because there 

are no more input symbols. Hence, the automaton 

stays in the nonaccepting state B and the user is 

shown the message "The string is not accepted". 
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Figure 8. Simulating the automaton from Example 1, Fig. 7, for the accepted input word abaa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. ε-NFA accepting words formed with a and b having at least an a on last 4 positions. 

 

(a) The user is announced about successfully compiling a deterministic 
automaton. 

(b) Step 1: Input symbol a drives the automaton to state B. 

(c) Step 2: The automaton reaches state C after reading input symbol b. (d) Step 3: An a appears on the input and the automaton goes to state B. 

(e) Step 4: The automaton sees another a and passes to state F. (f) Because F is an accepting state, the user is announced that the word 
abaa is accepted. 
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(a) The user is announced about successfully compiling a 

nondeterministic automaton. 

 

(b) Step 1: The automaton reads input b and passes to  

state B. 

 

(c) Step 2: The automaton reaches states C and B 

after processing symbol a. 

 

(d) Step 3: A b appears on the input and 

the automaton goes to states D, B and G. 

 

 

(e) Step 4: The automaton sees another b and 

passes to states E, B and H. 

 

 

(f) Step 5: Another b leads the automaton to 

states F, B and I. 

 

 

(g) Step 6: The automaton sees the last symbol, b, and passes to  

states J and B. 

 

 

(h) The automaton leaves state J. The user is announced the string 

babbbb is not accepted. 
  

 

Figure 10. Simulation steps for the automaton shown in Fig. 9. 
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CONCLUSION 

We introduced in this paper a simulator for 

deterministic and nondeterministic finite automata 

focused on their functionality in order to outline their 

manner of operating and to simplify their design in 

the laboratory classes, the emphasis being laid on 

their understanding. Likewise, we depicted the 

algorithms on which our application is based and 

discussed details about implementation. The 

application provides the user with an answer at the 

end of the simulation, after the entire input symbols 

were consumed. This simulator can be seen as a light 

tool to verify correctness of the built automata, to test 

and closely observe the evolution of states with 

respect to the input. During simulation, the current 

transition is highlighted in a random color and the 

current state becomes red in order for the user to 

clearly notice the correspondence between the 

automaton answer and the current input symbol. 

Pointing out this correspondence was the main 

purpose of the application. 

The simulator can be extended by adding new 

functionalities: a mechanism for minimizing DFAs, 

the possibility of conversion from NFA to DFA and 

from ε-NFA to regular expressions and the other way 

round. If we consider the interface, this could be 

enhanced by adding a stop button for the continuous 

simulation (practically, that would reset the 

simulation) and a button for stepping backwards into 

the simulation. Also, good features would be: to move 

more states at a time on the canvas and to be able to 

add symbols on the transitions in this manner: a..z 

(i.e., a range of symbols, in this case all the English 

letters) when it is necessary. 
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