
Journal of Electrical Engineering, Electronics, Control and Computer Science –

JEEECCS, Volume 9, Issue 33, pages 31-38, 2023

Scalable Software Development with

Microservices

Agharese Rosemary Usiobaifo

Department of Computer Science, Faculty of

Physical Sciences, University of Benin, P.M.B

1154, Benin City Nigeria

rosemary.usiobaifo@uniben.edu

Roseline Oghogho Osaseri

Department of Computer Science, Faculty of

Physical Sciences, University of Benin, P.M.B

1154, Benin City Nigeria

roseline.osaseri@uniben.edu

Abstract – Microservices is a software architecture that

allows for the development and deployment of

independently deployable, modular services. This

approach to software development is designed to be

scalable, making it particularly well-suited for large,

complex systems that require the ability to handle a high

volume of traffic or data. In this study, we demonstrated

the benefits of using microservices for scalable software

development, including the ability to deploy and update

individual services without disrupting the entire system,

and the ability to easily scale specific components of the

system as needed. We also discuss some of the challenges

and considerations involved in implementing a

microservices architecture, including the need for robust

communication and integration between services and the

potential for increased complexity in the development

process. Overall, microservices offer a promising

approach to building scalable, maintainable software

systems in today's fast-paced, data-driven world.

Keywords- Microservices; Scalability; Modular

services; Deployment; Complexity

I. INTRODUCTION

In recent years, microservices architecture has
gained significant attention as a software design pattern
for building scalable, maintainable, and fault-tolerant
applications. This approach involves decomposing a
large, monolithic application into a set of small,
independent services that communicate with each other
through well-defined interfaces. The microservices
architecture enables teams to work on individual
services independently, allowing for faster
development and deployment of new features, as well
as easier scaling of individual services.

The University of Benin, like many other
educational institutions, faces the challenge of
managing a large and complex student information
system. While the West Africa e-University Project
(Kofa) portal currently used by the University provides
extensive features such as academic record
management, result processing, and payment
processing, it has limitations in terms of meeting the
needs of the large student and staff populations. To
address these limitations, this paper proposes the use of
microservices architecture to extend the current
students' portal of the University of Benin.

The main objective of this research is to reduce the
probability of an outage on the portal, remove single
points of failure and other vulnerabilities, enhance the

experience of students and staff of the university,
remove the constraints around elections, evaluations,
and fee payments on campus, and make the source code
of the portal more accessible to students for
contributions. The paper also highlights the technical
flaws of the current Kofa application and how the use
of microservices architecture can overcome these flaws.

Overall, this research aims to provide a
comprehensive understanding of microservices
architecture and its application in the context of
extending the University of Benin students' portal. The
findings of this study can be valuable for software
engineers, architects, and educational institutions
interested in designing scalable and maintainable
software systems.

II. RELATED WORK

Monolithic architecture is a software design where
all components of an app are built and deployed
together as a single unit, making them large, complex,
and difficult to maintain and scale. All application
components are tightly coupled, making it challenging
to change one part without affecting other parts.
Moreover, testing and deploying monolithic
architectures can be difficult, as changes to the
codebase require rebuilding and redeploying the entire
application. Monolithic architectures, while simple to
develop and understand, have become less popular due
to their difficulty in maintaining and scaling as
applications become more complex. In contrast, the
microservices architecture has gained popularity as it
allows for individual services to be developed and
deployed independently, promoting the principles of
separation of concerns and single responsibility.
Microservices allow for decentralized governance and
data management, enabling cross-functional teams to
take ownership of specific services and choose the best
technology stacks for their needs. Microservices were
proposed by [8] as a solution to the frustrations of
monolithic systems, and have since become a popular
architectural style for modern software applications.

A. Motivations for Adopting Microservices

Architecture

Reference [11] conducted a survey of practitioners
who adopted the microservices architecture and found
that motivations included easier scaling, the delegation
of team responsibilities, and support for CI/CD, fault
tolerance, and experimentation with new technologies.

mailto:rosemary.usiobaifo@uniben.edu
mailto:roseline.osaseri@uniben.edu

A. R. Usiobaifo, R. O. Osaseri

32

However, respondents also reported challenges in
decoupling monolithic applications, managing
intercommunication between services, and estimating
programming effort. Additionally, the benefits of
remote service deployment in microservices require
additional DevOps efforts and can increase software
deployment costs.

Reference [10] conducted a systematic review of
written and video materials from technology companies
that have adopted the microservices architecture,
highlighting the pains and gains of the architecture and
providing recommendations for future research
directions. Their research provides a foundation for
further academic exploration of the topic.

In reference [12] developed an application based on
microservices gaining attraction over monolithic
applications. An approach for the development and
deployment of applications based on resources:
microservices technology software architecture, a
continuous integration framework and environment for
the deployment of microservices with high scalability
and availability

Reference [13] conducted a survey on the
decomposition of multi-level scalability assessment.
The results of an-in-depth evaluation so that the
approach can effectively support engineers in
decomposing monolithic or coarse grained
microservices into scalable microservices.

B. Migrating a Legacy Application from Monolithic

to Microservices Architecture

The template is used to format your paper and style
the text. All margins, column widths, line spaces, and
text fonts are prescribed; please do not alter them. You
may note peculiarities. For example, the head margin in
this template measures proportionately more than is
customary. This measurement and others are deliberate,
using specifications that anticipate your paper as one
part of the entire proceedings, and not as an independent
document. Please do not revise any of the current
designations.

The transition from a monolithic design to a
microservices architecture can be a difficult and time-
consuming process. Each legacy monolithic program is
unique, and the specific conversion issues will differ
depending on the application's features. There are
various methodologies and techniques for migrating a
monolithic program to microservices, each having
advantages and disadvantages. The purpose of
migration, in general, is to break the monolithic
application into a series of separate, modular services
that can be created, deployed, and scaled independently.
This might need major application re-architecting,
which can be a time-consuming and difficult procedure.
The final result, however, is frequently a more
adaptable, scalable, and robust application that can
better meet the changing demands of the company.
Reference [5] reviewed different migration techniques.
They highlighted their benefits and drawbacks as
captured and represented in table 1 below

TABLE I. REVIEW OF DIFFERENT MIGRATION TECHNIQUES

S/N Method Benefits Drawbacks

1

Mazlami et al (2019) proposed a microservice

extraction model with a tool for structured service

decomposition using graph cutting. It recommends

microservice candidates based on 16 coupling criteria

from literature and industry know-how, using input

from software engineering artifacts.

Approach scales with

revision history size.

The proposed approach

reduces microservice

team size.

The extraction model is limited to

using classes as the atomic unit, but

using methods or functions could

improve granularity and precision.

2

Knoche et al (2019) proposed a five-step migration

process to decompose an application into

microservices, including defining external and internal

service facades and replacing service implementations

with microservices.

Improve interfaces,

reduce entry points, and

remove redundancy.

Proprietary UI tech may not work with

a modernization approach.

3

Dehghani (2018) proposed a formal migration process

from monolith to microservice architecture consisting

of principles such as minimizing dependency back to

the monolith, splitting sticky capabilities early,

decoupling vertically, and releasing data early. The

process involves going macro first, then micro, and

migrating in atomic evolutionary steps.

The approach allows safe,

incremental migration.

The migration process is very long and

formal without measurements.

4

Fan et al proposed a migration process based on

SDLC, including all of the methods and tools required

during design, development, and implementation

Advantages of
microservices

architecture: specialized,

fault-tolerant, and
automated.

Microservices require complex

configurations and use more resources

due to the need for multiple tools for

flexibility.

Scalable Software Development with Microservices

33

Reference [1] proposes a Situational Method
Engineering (SME) approach for migrating to a cloud-
native architecture, such as microservices. The
approach involves creating a repository of reusable
process patterns or method chunks, which are then used
to construct a specific method for migration based on
the requirements and needs of the project. This allows
for greater flexibility and adaptability to the unique
needs of each migration, as opposed to a one-size-fits-
all methodology.

Furthermore, the microservices architecture offers
better fault isolation and resiliency than monolithic
architecture. If a service fails, it only affects that
particular service and not the entire application. This
way, the system can continue to function, and the
impact of the failure is limited. The independent
deployment of services also allows for continuous
delivery and deployment, making it easier to roll out
updates and new features without disrupting the entire
application.

III. SYSTEM ANALYSIS AND DESIGN

This section discusses the importance of system
analysis and design in identifying inefficiencies and
proposing solutions to improve performance. System
analysis involves breaking down the system into
smaller parts to understand its behavior and identify
problems, while system design defines the architecture
and specifications of the system to meet requirements.
These processes are crucial in complex system
development and inform decision-making and project
planning.

A. Architecture of the Current Monolith System

Define abbreviations and acronyms the first time
they are used in the text, even after they have been
defined in the abstract. Abbreviations such as IEEE, SI,
MKS, CGS, sc, dc, and rms do not have to be defined.
Do not use abbreviations in the title or heads unless they
are unavoidable.

As illustrated in figure 1, the current system as a
monolith has all the features on the platform as modules
in a single application. HTTP requests into the
application are handled by a router that processes the
request using the URL parameter(s) in the request. The
appropriate controller in the concerned module is then
used to handle database queries and other required
operations.

In this monolithic application, only one database
server is usually utilized. Modules can directly access
the database to insert, update, read, and delete data. For
example, the payment and voting services can directly
fetch and modify records in the user table which is
relevant to all features of the application.

Figure 1. Architecture of a monolithic application

B. Units Architecture of the Microservices System

The proposed microservices architecture is
represented in figure 2, requests are handled by the
Application Programming Interface (API) gateway.
This gateway serves as a bridge among all the services
by intercepting incoming requests and routing them to
routers in the destination services. The gateway can also
be enhanced by introducing a load balancer to
efficiently distribute traffic between copies of the
vertically scaled services.

Figure 2. Architecture of a monolithic application

C. Use Case Diagram

Use case diagrams are drawn to visualize high-level
system functional requirements. The diagrams control
primary actors and use cases. Actors are entities that
will interact with the application while use cases are
system functions that actors can perform as depicted in
Figure 3 below a student as an actor using the system
and the functions that the user can perform.

A. R. Usiobaifo, R. O. Osaseri

34

Figure 3. Use case diagram for a student in the proposed system

D. Entity-Relationship Diagrams

Figure 4 represent the database schema for the
account services, An Entity Relationship (ER) diagram
is a visual tool that depicts the relationships between
entities in a database. It represents entities as boxes and
their relationships as lines connecting the boxes. An
entity refers to an object or concept about which data is
stored, and a relationship is a connection between two
or more entities. Each entity has attributes that represent
its properties. The article also provides an example of
an ER diagram illustrating the relationship between
tables in an account service: the user table, containing
authentication credentials and other required data, and
the profile table, containing additional user account
data. The figure also shows a one-to-many relationship

between a user and fee payments records. This is
because each student is expected to pay different fees in
the course of their studentship in the university. At the
beginning of each session, the school_fee_paid column
in the user table is set to false for all students. After
successful payment of the school fee, the value is
changed to true and the new status is broadcast to all
other services for an update. The database
normalization by removing redundancy in duplicating
user data in the candidates and votes tables. Rather, a
one-to-many relationship is established between the
user and candidates table, between the user and votes
table, and between the candidates and votes tables.

Figure 4. Database schema for the account service

Scalable Software Development with Microservices

35

E. Entity-Relationship Diagrams Systems

Requirements

System requirements in software development refer
to the specific hardware and software requirements that
must be met for a software application to function
properly. These requirements can vary depending on
the complexity and functionality of the application, as
well as the operating system and platform it will be used
on.

The interface between the user and the system
permits data to be submitted by users of the system.
Most of the data input is done through the keyboard and
mouse or touchpad; this works for the text input,
dropdown menu, and checkbox fields.

The input variables in this paper are from the
students, they are generally grouped as input data for
authentication, profile update, fee payment, and the e-
voting form. Output requirements specify the results the
application will generate. These include; The student’s
profile data, courses registered, electoral aspirants,
aspirants’ candidacy status, voting results, etc

The functional requirements include accepting valid
login input, showing authenticated student profile data,
allowing profile updates, processing fee payments,
displaying a list of electoral aspirants and their
candidacy status, and allowing authenticated students to
vote after paying fees. Non-functional requirements
include extensibility, maintainability, security,
resilience in the event of an outage or security breach,
and graceful handling of large traffic. The backend
features are implemented in TypeScript, is a superset of
JavaScript that compiles to plain JavaScript, and it
includes features such as type annotations, interfaces,
classes, modules, and optional static typing. TypeScript
was chosen for its improved code reliability, better code
organization, ecosystem support, and improved

development experience. The best way for the
microservice to work, is to use the backend for frontend
design pattern. A popular architectural pattern, as an
alternative to the API gateway pattern. Its defining
features are that, each separate front-end app has its
own dedicated API which communicates with the
extended APIs. That way, different frontend apps of
varying purpose and structure including those for
mobile applications/mobile interfaces or desktop web
URL. The frontend of microservices gateway is the
whole system APIs of every microservices application
in the system. The microservices application which will
provide the backend capabilities through exposing API.
The database used for this paper implementation is
PostgreSQL.

IV. IMPLEMENTATION

This section discusses the system implementation,
including the design, building, and deploying of the
computer application. The focus is on testing and
debugging the functions of the system, including unit
testing and integration testing. Unit tests are conducted
to verify individual units or components of a system are
working correctly, while integration tests are designed
to ensure that the different units or components of a
system work together as intended. Both types of testing
are crucial to ensuring that software meets specified
requirements and functions as expected. The
TypeScript framework used to build the home page is
the NestJS framework. Model-view controller (MVC)
pattern was used to render the view and the handlebar
template engine. It is a simple templeting language that
uses template and an input object to generate html or
other text format.

As illustrated in figure 5 the visitors to the
application are shown a landing page with navigation
links, event updates, and more relevant information.

A. Features of the System

Figure 5. Homepage with navigation links

A. R. Usiobaifo, R. O. Osaseri

36

Figure 6. Students’ login page

 Figure 6 displays an interface through which the

user’s email address and password are submitted. The

credentials entered are validated and the user is granted

access to the dashboard if they are correct.

Figure 7. Profile info page

The student’s profile data are displayed here in figure 7 as well as the registered courses for the session.

Figure 8. Fee payment page

Scalable Software Development with Microservices

37

Figure 8 displays an interface for making fee

payments. The student selects the fee type in the

dropdown menu and inputs the details of his or her

ATM card.

Figure 9. Profile update page

Figure 9 presents an interface for the user to update his or her profile information.

Figure 10. SUG voting page

Students get to vote for their preferred Student
Union Government election candidate by clicking on
Cast Vote in front of the candidate’s name as captured
in figure 10.

V. CONCLUSIONS

This study aimed to demonstrate the advantages of
implementing microservices architecture over a
monolithic one in a web-based application, particularly
in the student portal of the University of Benin. The
paper broke down a monolithic application into smaller,
individual services that can be combined to work like a
single application. The resulting application allows
students to log in, view their profile information, make
fee payments, and vote for student government
candidates. The benefits of implementing a
microservices architecture include flexibility,

scalability, and improved control over school
management.

It is recommended that the necessity of
implementing a microservices architecture should be
carefully considered, and the choice of programming
language, database system, and other components
should be deliberately chosen. Data migration should
be handled by experienced database administrators, and
at least one competent DevOps engineer should oversee
the deployment and maintenance of the application.
Finally, the monolithic application should be gradually
phased out and replaced with the microservices
application, ensuring that all necessary features and
data have been migrated.

In summary, the microservices architecture is a
more flexible and scalable approach to software
development compared to monolithic architecture. It
allows for greater agility and faster development times

A. R. Usiobaifo, R. O. Osaseri

38

by breaking down the application into smaller,
independent services that can be developed and
deployed independently. While it comes with its
challenges, such as the complexity of managing a
distributed system, the benefits of microservices
architecture are driving its adoption across.

REFERENCES

[1] A. Balalaie, A. Heydarnoori, A. and P. Jamshidi,
“Microservices Architecture Enables DevOps: An Experience
Report on Migration to a Cloud-Native Architecture”, IEEE
Software, vol. 33, P 3, 2016.

[2] R .Chen, S. Li,. and Z .Li,. "From Monolith to Microservices:
A Dataflow-Driven Approach," 24th Asia-Pacific Software
Engineering Conference (APSEC), Nanjing, pp. 466–475,
2017.

[3] Z. Dehghani, “How to break a Monolith into Microservices”
[Online].Available:https://martinfowler.com/articles/break-
monolith-nto-microservices.html (accesed on 2018).

[4] C Fan,. and S. Ma, "Migrating Monolithic Mobile Application
to Microservice Architecture: An Experiment Report," IEEE
International Conference on AI & Mobile Services (AIMS),
Honolulu, HI, pp. 109–112, 2017.

[5] J .Kazanavičius,. and D Mažeika, “Migrating Legacy Software
to Microservices Architecture”, IEEE Open Conference of
Electrical, Electronic and Information Sciences, pp. 1-5, 2019.

[6] H. Knoche, and W .Hasselbring, "Using Microservices for
Legacy Software Modernization," IEEE Software, vol. 35, no.
3, pp. 44–49, 2018.

[7] A .Levcovitz., R .Terra. and M. T Valente, “Towards a
Technique for Extracting Microservices from Monolithic
Enterprise Systems.” 3rd Brazilian Workshop on Software
Visualization, Evolution, and Maintenance (VEM), pp. 97–
104, 2015.

[8] J. Lewis, and M. Fowler, “Microservices” [Online]. Available:
https://martinfowler.com/articles/microservices.html (2018).

[9] G .Mazlami, J. Cito, J. and P. Leitner, "Extraction of
Microservices from Monolithic Software Architectures," IEEE
International Conference on Web Services (ICWS), Honolulu,
HI, pp. 524–531, 2017.

[10] J .Soldani, D. A Tamburri, and W.Van Den Heuvel,. “The
Pains and Gains of Microservices: A Systematic Grey
Literature Review”, Journal of Systems and Software, Volume
146, pp. 215-232. 2018.

[11] D.Taibi, , V. Lenarduzzi and C. Pahl., “Processes, Motivations,
and Issues for Migrating to Microservices Architectures: An
Empirical Investigation”, IEEE Cloud Computing, pp. 1-12.
2017.

[12] V.Saquicela, G.Campoverde, J.Avila andM.A. Fajardo,
“Building Microservices for Scalability and Availability: Step
by Step, fromBegining to the End” In book: New Perspective
in Software Engineering. Pp169-184. January 2021.

[13] M.Camelle and C.Calarusso, “Actor-Driven Decomposition of
Microservices through Multi-level Scalability Assessment”
ACM Transaction on Software Engineering and Methodology.
Vol 32, issue 5, 117, pp1-46. July 2023.

https://martinfowler.com/articles/break-monolith-nto-microservices.html
https://martinfowler.com/articles/break-monolith-nto-microservices.html
https://martinfowler.com/articles/microservices.html%20(2018

