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Abstract –This paper presents the design and validation 
of an Internet-of-Things (IoT) architecture for real-time 
monitoring of classroom environmental conditions. 
Centered on a Wi-Fi–enabled embedded node (ESP8266) 
and a lightweight edge-to-cloud pipeline, the system 
acquires, transmits, and visualizes multivariate sensor 
data through a MATLAB-based virtual instrument. The 
approach emphasizes low-cost components, minimal 
power and code footprint, and a modular interface that 
supports rapid reconfiguration of sensing channels and 
alert logic. A proof-of-concept deployment in 
representative classroom scenarios demonstrates reliable 
telemetry, stable user interaction, and actionable 
feedback for indoor comfort and safety management. The 
results indicate that the proposed stack offers a practical 
pathway for scalable educational IoT, bridging physical 
sensing and data-driven decision support while 
remaining accessible for laboratory, pilot, and 
instructional use. 

Keywords- IoT, environmental sensing, Wi-Fi 
telemetry, MATLAB, virtual instrument, real-time data, 
indoor air quality, low-cost design 

I.  INTRODUCTION  
Indoor environmental quality (IEQ) in educational 

spaces has a direct impact on students’ cognitive 
performance, attendance, and well-being. Parameters 
such as temperature, relative humidity, carbon dioxide 
(CO₂), and ambient light influence comfort and 
ventilation adequacy, while energy constraints and 
building heterogeneity complicate continuous 
supervision. Despite increased awareness, many 
classrooms still lack affordable, real-time monitoring 
solutions that can be rapidly deployed, maintained with 

minimal expertise, and integrated into existing digital 
workflows for instructional or facility-management use 
[1]. 

Recent advances in the IoT have lowered barriers to 
pervasive sensing. Low-cost microcontrollers with 
integrated Wi-Fi—most notably the ESP8266—enable 
battery-friendly data acquisition, lightweight edge 
processing, and direct IP connectivity. Complementary 
software frameworks now make it practical to prototype 
end-to-end pipelines that ingest sensor streams, 
visualize trends, and trigger alerts without enterprise-
grade infrastructure. Nevertheless, institutions 
frequently encounter gaps around reproducibility, 
interoperability with analysis tools used in teaching, 
and transparent calibration and validation practices 
suitable for academic environments [2]. 

This work addresses those gaps by designing and 
implementing a classroom-oriented IoT monitoring 
system that combines an ESP8266-based sensing node 
with a MATLAB graphical user interface (GUI) acting 
as a virtual instrument over Wi-Fi. The hardware 
platform collects essential environmental variables at 
configurable sampling rates and publishes timestamped 
measurements to a local network endpoint [2]. The 
MATLAB interface provides real-time visualization, 
basic quality checks, data logging, and export, offering 
an approachable bridge between embedded acquisition 
and the data analysis workflows commonly taught in 
STEM (Science, Technology, Engineering and 
Mathematic) curricula [2], [3]. 

Beyond assembling commodity components, the 
approach emphasizes a reproducible, open, and low-
cost bill of materials; a communication scheme that is 
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simple to firewall and maintain within campus 
networks; calibration and sanity-check routines aligned 
with classroom use; and a user interface (UI) design that 
supports both pedagogical exploration and facility 
diagnostics. Collectively, these choices aim to facilitate 
rapid adoption in teaching laboratories while remaining 
credible for operational monitoring pilots. 

The remainder of the paper is organized as follows. 
Section 2 reviews related literature on IoT 
environmental monitoring, typical sensing modalities, 
and UI and analytics approaches. Section 3 details the 
hardware architecture, sensors, power, and networking. 
Section 4 presents the software stack, including 
firmware design, the data protocol, and the MATLAB 
GUI used as a virtual instrument. Section 5 discusses 
results and system behavior under representative 
scenarios, and Section 6 concludes with limitations and 
avenues for future work. 

II. LITERATURE REVIEW 
A growing body of literature examines IoT-based 

environmental monitoring for occupied indoor spaces, 
with a consistent emphasis on low-cost 
microcontrollers (ESP8266/ESP32, Arduino-class 
MCUs (Microcontrollers)), commodity sensors for 
temperature, humidity, light, CO₂ and noise, and 
lightweight connectivity stacks (Wi-Fi with             
HTTP (Hypertext Transfer Protocol) / MQTT (Message 
Queuing Telemetry Transport)). Across studies, two 
recurring design axes emerge: (i) edge vs. cloud 
processing—ranging from simple on-node filtering and 
timestamping to full cloud analytics—and (ii) human–
machine interfaces—spanning LabVIEW/MATLAB 
virtual instruments, custom web dashboards, and 
mobile apps for real-time visualization, alerting, and 
data archival. Typical challenges reported include 
sensor calibration and drift, sampling strategy vs. 
battery life, network reliability and QoS (Quality of 
Service), time synchronization, and the handling of 
privacy and security in educational settings. Recent 
works also highlight reproducible data pipelines     
(CSV (Comma-Separated Values) / JSON (JavaScript 
Object Notation) exports, REST (Representational 
State Transfer endpoints), interoperable messaging, and 
comparative evaluations of accuracy and latency under 
classroom-like dynamics (occupancy changes, 
door/window events). This chapter situates the present 
study within these trajectories, distilling common 
architectures, trade-offs, and best practices that inform 
our subsequent design and implementation choices. 

The paper [4] reports a low-cost IoT air-quality 
node that couples an ATmega328 master with an 
ESP8266 Wi-Fi coprocessor, integrating MQ135 gas 
sensing and DHT11 temperature/humidity to stream 
calibrated measurements to a cloud dashboard 
(Blynk/ThingSpeak) and trigger threshold-based alerts; 
communication is handled via software-serial, and the 
authors validate an end-to-end pipeline from sensing to 
web visualization on a functional prototype. 

A closely related strand of work is the IoT-enabled 
environmental control for small cultivation spaces, [5] 
present a low-cost mini-farm built around an ESP8266 
(NodeMCU) that acquires temperature and humidity 

from dual DHT11 sensors and exposes both monitoring 
and actuation (brushless fan, thermoelectric cooler, 
ultrasonic mist) through a Blynk mobile dashboard; 
power delivery (12 V rails, LM317 regulation) and a 
relay/ESC (Electronic Speed Controller) stage enable 
closed-loop thermal–humidity management, validated 
with a two-week dataset and step-wise scenarios 
(monitor-only, TEC (Thermoelectric Cooler) on, TEC 
+ ice packs) showing measurable set-point correction 
and stability improvements. 

[6] presents the design and prototyping of an 
industrial temperature monitoring system built around 
a NodeMCU ESP8266 and a DS18B20 digital 
thermometer, using MQTT for lightweight publish–
subscribe messaging and Node-RED for visualization. 
A Raspberry Pi 3B+ hosts the Mosquitto broker and the 
Node-RED dashboard, while the ESP8266 node 
periodically publishes temperature readings (every 10 
seconds) to a designated topic; data are shown both on 
a serial console and via web gauges/plots. The authors 
outline hardware and software components (ESP8266 
characteristics, DS18B20 1-Wire interfacing, Arduino 
IDE (Integrated Development Environment) 
workflow), detail the system architecture and Node-
RED flows, and report low-latency, low-bandwidth 
operation in the prototype. They conclude by proposing 
future extensions such as adding more sensor types and 
nodes and powering the system with green energy. 

The paper [7] presents an ESP8266-based air-
quality station that measures PM2.5 alongside 
temperature, relative humidity, and CO, and streams 
results to Google Sheets with dashboards in Google 
Data Studio for visual analysis. The prototype uses 
NodeMCU (ESP8266) with low-cost sensors (dust 
sensor, DHT11, MQ-series gas sensor) and a simple 
flow from acquisition to cloud visualization, enabling 
real-time monitoring and alerting. In month-long trials, 
PM2.5 readings were compared against Thailand’s 
Air4Thai reference data, yielding average percentage 
differences of ~3.9%  for PM2.5 and acceptable 
deviations for temperature/humidity, indicating 
adequate accuracy for community monitoring. The 
authors highlight practical deployment considerations 
(site selection, seasonality effects) and argue that the 
low cost and ease of integration make the approach 
suitable for broader urban or campus deployments. 

The authors of [8] present a low-cost IoT solution 
for data-center temperature supervision built around an 
ESP8266-based wireless sensor network that streams 
multi-point readings to a Ubidots cloud dashboard with 
real-time SMS/email alerts when thresholds are 
exceeded. The prototype uses DHT11/DHT22 
sensors—deployed redundantly per location for data 
validation—wired to ESP8266 nodes that handle both 
on-board processing (firmware developed in the 
Arduino IDE) and Wi-Fi connectivity to a router acting 
as the WSN access point. Temperature data are posted 
at minute-level intervals, visualized on the cloud, and 
drive configurable multi-level alarms; a >24-hour run 
demonstrated stable operation and timely notifications 
during induced thermal excursions, highlighting 
reduced total cost of ownership versus XBee/Arduino 
architectures. 
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III. MONITORING SYSTEM HARDWARE 
ARCHITECTURE 

This section describes the physical architecture of 
the hardware platform implements a compact, 
networked sensing node designed for continuous, 
classroom-scale environmental monitoring. At its core, 
the system couples a Wi-Fi–enabled microcontroller 
with a heterogeneous sensor suite and a minimal set of 
actuators, delivering local feedback (LCD (Liquid 
Crystal Display) / buzzer) and remote telemetry over 
IEEE 802.11 b/g/n. The architecture emphasizes low 
bill-of-materials cost, simple assembly, and electrical 
robustness (level-compatible interfaces, shared 
reference ground, decoupled rails), while preserving 
measurement fidelity through appropriate signal 
conditioning and wiring discipline. 

The processing and communication substrate is a 
NodeMCU development board built around the 
ESP8266EX SoC (System on Chip). This device 
provides a 32-bit Tensilica MCU (Microcontroller 
Unit), integrated 2.4𝐺𝐻𝑧 Wi-Fi MAC (Media Access 
Control) / PHY (Physical Layer), up to 
160𝑀𝐻𝑧	 clocking, GPIO (General-Purpose 
Input/Output) with interrupt capability, a 10-bit ADC 
(Analog-to-Digital Converter) (A0), and I²C (Inter-
Integrated Circuit) / SPI (Serial Peripheral Interface) / 
UART (Universal Asynchronous Receiver-
Transmitter) peripherals. In the proposed topology, the 
ESP8266 orchestrates periodic sampling, debounced 
event detection, local rule-based actuation, and 
MQTT/HTTP publishing. Timer-driven tasks and 
interrupt service routines are used to separate 
deterministic acquisition from asynchronous network 
activity [9]. 

The sensing layer targets the principal variables of 
indoor environmental quality and occupancy. For 
clarity, the main transducers and their electrical 
interfaces are enumerated below. 

• Temperature/Humidity (DHT11): one-wire 
digital protocol to a GPIO pin; sampling period 
2𝑠 ÷ 5𝑠  to remain within the sensor’s 
recommended duty cycle. The module’s pull-
up resistor is placed near the MCU to improve 
line integrity [10]. 

• Combustible gas/smoke (MQ-2): analog 
voltage proportional to gas concentration, 
routed to A0 through a resistor divider matched 
to the ESP8266’s ~1.0𝑉  ADC range; the 
heater element is powered from 5𝑉 with warm-
up time accounted for in firmware [11]. 

• Ambient illuminance (LDR (Light 
Dependent Resistors) / KY-018): passive 
photoresistor in a voltage divider, read by A0 
in a time-multiplexed scheme with the MQ-2 
(firmware arbitrates ADC access and applies 
per-channel calibration curves) [12]. 

• Acoustic level (KY-038): digital threshold 
output (DO) to a GPIO for noise events; 
optional analog channel (AO) can be profiled 
during calibration, but routine operation favors 

the debounced DO to limit ADC contention 
[13]. 

• Vibration/Shock (SW-420): digital 
comparator stage delivers a clean logic output 
to a GPIO; an RC (Resistor–Capacitor) 
network provides chatter suppression at the 
source [14]. 

• Proximity/Distance (HC-SR04): ultrasonic 
ranging with distinct TRIG/ECHO pairs; echo 
is captured via interrupt-timestamping to 
improve time-of-flight precision. One unit 
supports door/approach detection, the other 
coarse occupancy sensing [15]. 

The HMI (Human–Machine Interface) and 
actuation elements provide immediate, in-room 
feedback and automated mitigation: 

• LCD 16×2 (HD44780 with I²C backpack): 
connected to the ESP8266 via SDA/SCL; the 
I²C expander lowers pin count and permits bus 
co-existence with other I²C devices. The 
display presents current measurements, alarm 
states, and network status [16]. 

• Active buzzer: driven from a GPIO through a 
current-limiting resistor for audible alarms 
under threshold violations (e.g., excessive 
temperature or gas concentration) [17]. 

• Relay module + 𝟗𝑽  DC fan: a transistor-
isolated, opto-coupled relay board switches the 
fan supply under firmware control; flyback 
protection and separate 5𝑉  relay rail avoid 
MCU brown-outs during coil energization [18], 
[19]. 

The power-delivery network is built around a step-
down DC–DC (Direct Current to Direct Current) buck 
converter that derives regulated 5𝑉 from a higher input 
source; the ESP8266 and all 3.3𝑉-only peripherals are 
supplied either from the NodeMCU’s on-board 
regulator or a dedicated LDO, while high-draw loads 
(relay coil, sensor heaters, LCD backlight) remain on 
the 5𝑉  rail. All modules share a single reference 
ground; local 100𝑛𝐹  decouplers are placed at each 
device, and star-ground routing minimizes return-path 
interference. Signal-integrity precautions include short 
TRIG/ECHO leads, series resistors on fast GPIO lines, 
and ADC anti-alias filtering where applicable [20]. 

From a systems viewpoint, the node executes a 
deterministic acquisition loop (sensor polling, time-
stamped aggregation, plausibility checks) and a 
supervisory layer that handles alarm logic and network 
telemetry. Raw and derived metrics are rendered on the 
LCD, while event flags trigger the buzzer and relay. 
The ESP8266’s network stack batches payloads to 
reduce channel occupancy and applies reconnection 
back-off to maintain graceful behavior in congested 
Wi-Fi environments. 

The wiring diagram synthesizing the above 
interconnections—controller, sensors, HMI, relay-
driven fan, and power module—is shown in Figure 1. 
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Figure 1. ESP8266-based classroom monitoring node:        
wiring diagram 

IV. SYSTEM SOFTWARE DESIGN 
This chapter details the embedded and desktop 

software that enables end-to-end acquisition, transport, 
visualization, and supervisory control. The design 
follows a layered approach — sensor/actuator drivers 
→ data fusion & event logic → Wi-Fi transport → GUI 
presentation & control — to ensure determinism on the 
microcontroller and responsive interaction in the user 
interface. 

A. ESP8266 IoT firmware 
The ESP8266 firmware is implemented as a non-

blocking state machine in Arduino IDE (C/C++), using 
𝑠𝑒𝑡𝑢𝑝()	 for one-time initialization and 𝑙𝑜𝑜𝑝()	 for 
cyclic tasks scheduled with 𝑚𝑖𝑙𝑙𝑖𝑠() timers [21]. The 
main software responsibilities are sensor sampling, data 
conditioning, local alarms, Wi-Fi telemetry, and 
reception of remote commands (fan, LEDs, buzzer). 

& Initialization. On boot the MCU configures 
GPIO/ADC pins, initializes peripheral libraries 
(DHT, ultrasonic, MQ-2, LDR, SW-420, LCD, 
buzzer, relay), loads threshold values from 
flash (if present), and establishes a Wi-Fi 
connection (station mode) with exponential 
back-off and watchdog resets on persistent 
failure. 

& Acquisition & conditioning. Each sensor has 
its own sampling period (e.g., 1𝑠 ÷ 2𝑠  for 
DHT, 100𝑚𝑠 ÷ 200𝑚𝑠  for 
acoustic/vibration/ultrasonic,                 
250𝑚𝑠 ÷ 500𝑚𝑠  for LDR/MQ-2). Readings 
are debounced and filtered with a short 
moving-average; boolean events (noise spike, 
vibration) use hysteresis and minimum hold 
times to avoid chatter. A lightweight 
plausibility check (range, NaN) guards against 
spurious values. 

 

 

 

& Event logic (edge computing). The firmware 
evaluates rules locally to ensure timely reaction 
without network dependency: 

— over-temperature or high gas →  relay-
driven fan ON and buzzer alert. 

— excessive noise or detected vibration → 
buzzer pulse. 

— proximity events → optional actions (e.g., 
door logic). 

— Events are time-stamped (epoch ms) to 
support GUI timelines. 

& Telemetry & remote control. Measurements 
are serialized as a compact JSON/CSV frame 
and pushed over Wi-Fi using a simple REST 
POST or a persistent TCP (Transmission 
Control Protocol) socket (both options 
supported in the codebase). A typical JSON 
frame is: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

"t": 23.8,
"rh": 41.2,
"gas": 178,
"light": 0.62,
"sound": 0,
"dist": 123,
"vib": 0,
"fan": 1,
"buzz": 0,

"ts": 1712665234123

 

The firmware also subscribes to short 
command messages (e.g., 
{"𝑓𝑎𝑛": 0, "𝑏𝑢𝑧𝑧": 1} ), validates them, and 
applies actuator updates with acknowledgment. 
All I/O (Inputs/Outputs) is non-blocking; time-
critical paths use interrupts only where 
unavoidable. 
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& Reliability & security. A reconnect routine 
restores links after AP (Access Point) changes; 
sequence numbers prevent out-of-order GUI 
updates; optional checksum guards payload 
integrity. For campus/LAN (Local Area 
Network) deployments, WPA2 (Wi-Fi 
Protected Access) plus an application token in 
the header is used; TLS (Transport Layer 
Security) can be enabled on capable toolchains. 

B. MATLAB-based GUI  
The desktop application is built in MATLAB as a 

virtual instrument that fuses data streams, renders real-
time charts, logs datasets, and issues supervisory 
commands. The GUI, shown in Figure 2, opens a 
listener/socket (or polls an HTTP endpoint) to ingest 
MCU frames, parses the payload, and updates numeric 
indicators and strip-charts for Temperature, Humidity, 
Gas, Light, Sound, Distance, Vibration. Control 
widgets (buttons/toggles) publish JSON commands 
back to the ESP8266 for Fan/LED/Buzzer actuation. 

 

Figure 2. MATLAB GUI for real-time visualization and 
supervisory control of the ESP8266 classroom monitor 

V. RESULTS 
To evaluate the proposed IoT monitoring platform, 

we followed a staged test plan that combined bench 
validation with in-situ trials in a classroom mock-up. 
First, each sensing channel (temperature/relative 
humidity, gas, light, sound, vibration, ultrasonic 
distance) was verified individually against reference 
instruments and known stimuli (e.g., heat/cold packs, 
aerosol from a test spray, calibrated light and acoustic 
sources, discrete mechanical taps for the SW-420). 
Next, the full stack—ESP8266 firmware, Wi-Fi 
transport, and MATLAB GUI—was exercised end-to-
end to assess acquisition stability, time synchronization, 
and command/actuation loops (fan via relay, buzzer,  

 

Algorithmic flow (GUI): 

1. Initialize UI components, networking object, 
and a circular buffer for each channel. 

2. On message arrival: validate frame → parse 
fields → append to buffers → update numerical 
readouts and redraw plots; outliers are flagged 
but preserved in the log. 

3. Compute derived metrics (e.g., rolling 
mean/max over 1–5 min) for stable 
visualization and annotate threshold crossings. 

4. User actions (button presses) generate 
command frames with timestamps and a 
monotonic sequence; acknowledgments from 
the ESP are reflected in the status lamp 
(“System status” indicator). 

5. Periodic tasks persist data to disk (MAT-files 
or CSV) and refresh connection health. 

 

 

 

 

LEDs). Particular attention was given to start-up 
sequencing, reconnect logic after AP loss, and 
resilience to burst traffic when multiple widgets in the 
GUI simultaneously requested updates. 

In continuous runs, the system sustained real-time 
streaming with responsive plots and controls; the GUI 
reflected state changes (e.g., fan ON/OFF, buzzer 
alarms) without noticeable lag, and no material packet 
loss was observed over extended logging sessions. 
Under rapid environmental changes (door open/close, 
directed airflow, localized sound bursts), the channels 
exhibited coherent responses and recovered cleanly 
after threshold-triggered alarms.  
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The physical integration of sensors around the 
miniature classroom facilitated repeatable scenarios 
(occupant approach, excessive noise, increased 
temperature), demonstrating that the platform can 
support both monitoring and simple supervisory control 
for indoor educational spaces. 

 

Figure 3. Integrated GUI and physical testbed of the ESP8266-
based classroom environmental monitoring system 

 

CONCLUSION 

The study has presented a complete, low-cost IoT 
platform for classroom environmental monitoring, built 
around an ESP8266 node and a MATLAB graphical 
interface.  

After integration, the MATLAB GUI with live plots 
and controls, together with the classroom mock-up 

testbed (ESP8266 node, sensors, relay-driven fan, 
LCD), can be observed in Figure 3, which we used to 
validate real-time monitoring and actuation. 

 

 

 

 

 

 

The hardware integrates multi-domain sensing—
temperature, humidity, gas concentration, light, sound, 
vibration and distance—together with local feedback 
and actuation via LCD, buzzer, LEDs and a relay-
driven fan. On the software side, a compact C/C++ 
firmware manages time-stamped acquisition and 
reliable TCP transmission, while the MATLAB GUI 
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provides responsive visualization and supervisory 
control through live plots, status indicators and 
command buttons. Validation on a physical classroom 
mock-up confirmed end-to-end operation: streams were 
received in real time, commands were executed 
deterministically, and the system remained stable 
during extended runs with variable stimuli that emulate 
occupied classroom conditions. 

Despite these results, several constraints remain. 
The current prototype operates as a single node, uses 
unencrypted TCP transport and relies on manual sensor 
calibration. Power delivery is bench-sourced rather than 
optimized for long-term deployment, and the user 
interface is desktop-bound, limiting accessibility and 
multi-site management. Control policies are 
intentionally simple and rule-based, and historical 
analytics are confined to session-level inspection rather 
than full life-cycle data management. 

Future development will address these limitations 
along three axes: sensing fidelity, secure scalability and 
operational robustness. First, we plan to enrich the 
sensing stack with CO₂ / TVOC (Total Volatile Organic 
Compounds) and PM2.5 modules and to implement 
temperature- and humidity-compensated self-
calibration, thereby improving air-quality inference and 
longitudinal comparability. Second, the communication 
layer will migrate to MQTT over TLS with certificate-
based authentication, augmented by over-the-air 
firmware updates, watchdogs and structured telemetry 
for remote diagnostics; multi-node synchronization and 
aggregation will enable classroom- and building-level 
views with measured latency, jitter and loss. Third, we 
will replace ad-hoc rules with lightweight edge 
intelligence for anomaly detection and occupancy 
inference, and we will evaluate adaptive control 
strategies for ventilation. 

In parallel, the data pipeline will target a time-series 
back end with role-based dashboards and programmatic 
access, while the hardware will be consolidated on a 
custom PCB (Printed Circuit Board) with EMI 
(Electromagnetic Interference) / ESD (Electrostatic 
Discharge) protection, fused power paths and efficient 
DC–DC regulation housed in a classroom-ready 
enclosure. A web-based client will replicate the 
MATLAB interface to broaden access across devices. 
Taken together, these directions outline a clear pathway 
from a functional demonstrator to a secure, scalable and 
analytically rich platform capable of supporting 
evidence-based decisions on indoor environmental 
quality and energy efficiency in schools. 
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