
Journal of Electrical Engineering, Electronics, Control and Computer Science –
JEEECCS, Volume 11, Issue 38, pages 9-16, 2025

Design and Implementation of an ESP8266-
Based IoT System for Real-Time Classroom

Environmental Monitoring

1st Stanciu Dumitru-Cǎtǎlin
Faculty of Electronics, Communications and

Computers
National University of Science and Technology

Politehnica Bucharest
Pitesti, Romania

cstanciuzedx01c@gmail.com

2nd Dinicǎ Rǎzvan-Andrei
Faculty of Electronics, Communications and

Computers
National University of Science and Technology

Politehnica Bucharest
Pitesti, Romania

razvanandreidinica@gmail.com

3rd Drǎguşin Sebastian-Alexandru
Department of Electronics, Computers and

Electrical Engineering
National University of Science and Technology

Politehnica Bucharest
Pitesti, Romania

dragusin.sebi@yahoo.com

4th Bizon Nicu
Department of Electronics, Computers and

Electrical Engineering
National University of Science and Technology

Politehnica Bucharest
Pitesti, Romania

nicubizon@yahoo.com

Abstract –This paper presents the design and validation
of an Internet-of-Things (IoT) architecture for real-time
monitoring of classroom environmental conditions.
Centered on a Wi-Fi–enabled embedded node (ESP8266)
and a lightweight edge-to-cloud pipeline, the system
acquires, transmits, and visualizes multivariate sensor
data through a MATLAB-based virtual instrument. The
approach emphasizes low-cost components, minimal
power and code footprint, and a modular interface that
supports rapid reconfiguration of sensing channels and
alert logic. A proof-of-concept deployment in
representative classroom scenarios demonstrates reliable
telemetry, stable user interaction, and actionable
feedback for indoor comfort and safety management. The
results indicate that the proposed stack offers a practical
pathway for scalable educational IoT, bridging physical
sensing and data-driven decision support while
remaining accessible for laboratory, pilot, and
instructional use.

Keywords- IoT, environmental sensing, Wi-Fi
telemetry, MATLAB, virtual instrument, real-time data,
indoor air quality, low-cost design

I. INTRODUCTION
Indoor environmental quality (IEQ) in educational

spaces has a direct impact on students’ cognitive
performance, attendance, and well-being. Parameters
such as temperature, relative humidity, carbon dioxide
(CO₂), and ambient light influence comfort and
ventilation adequacy, while energy constraints and
building heterogeneity complicate continuous
supervision. Despite increased awareness, many
classrooms still lack affordable, real-time monitoring
solutions that can be rapidly deployed, maintained with

minimal expertise, and integrated into existing digital
workflows for instructional or facility-management use
[1].

Recent advances in the IoT have lowered barriers to
pervasive sensing. Low-cost microcontrollers with
integrated Wi-Fi—most notably the ESP8266—enable
battery-friendly data acquisition, lightweight edge
processing, and direct IP connectivity. Complementary
software frameworks now make it practical to prototype
end-to-end pipelines that ingest sensor streams,
visualize trends, and trigger alerts without enterprise-
grade infrastructure. Nevertheless, institutions
frequently encounter gaps around reproducibility,
interoperability with analysis tools used in teaching,
and transparent calibration and validation practices
suitable for academic environments [2].

This work addresses those gaps by designing and
implementing a classroom-oriented IoT monitoring
system that combines an ESP8266-based sensing node
with a MATLAB graphical user interface (GUI) acting
as a virtual instrument over Wi-Fi. The hardware
platform collects essential environmental variables at
configurable sampling rates and publishes timestamped
measurements to a local network endpoint [2]. The
MATLAB interface provides real-time visualization,
basic quality checks, data logging, and export, offering
an approachable bridge between embedded acquisition
and the data analysis workflows commonly taught in
STEM (Science, Technology, Engineering and
Mathematic) curricula [2], [3].

Beyond assembling commodity components, the
approach emphasizes a reproducible, open, and low-
cost bill of materials; a communication scheme that is

Stanciu Dumitru-Cǎtǎlin, Dinicǎ Rǎzvan-Andrei, Drǎguşin Sebastian-Alexandru, Bizon Nicu

10

simple to firewall and maintain within campus
networks; calibration and sanity-check routines aligned
with classroom use; and a user interface (UI) design that
supports both pedagogical exploration and facility
diagnostics. Collectively, these choices aim to facilitate
rapid adoption in teaching laboratories while remaining
credible for operational monitoring pilots.

The remainder of the paper is organized as follows.
Section 2 reviews related literature on IoT
environmental monitoring, typical sensing modalities,
and UI and analytics approaches. Section 3 details the
hardware architecture, sensors, power, and networking.
Section 4 presents the software stack, including
firmware design, the data protocol, and the MATLAB
GUI used as a virtual instrument. Section 5 discusses
results and system behavior under representative
scenarios, and Section 6 concludes with limitations and
avenues for future work.

II. LITERATURE REVIEW
A growing body of literature examines IoT-based

environmental monitoring for occupied indoor spaces,
with a consistent emphasis on low-cost
microcontrollers (ESP8266/ESP32, Arduino-class
MCUs (Microcontrollers)), commodity sensors for
temperature, humidity, light, CO₂ and noise, and
lightweight connectivity stacks (Wi-Fi with
HTTP (Hypertext Transfer Protocol) / MQTT (Message
Queuing Telemetry Transport)). Across studies, two
recurring design axes emerge: (i) edge vs. cloud
processing—ranging from simple on-node filtering and
timestamping to full cloud analytics—and (ii) human–
machine interfaces—spanning LabVIEW/MATLAB
virtual instruments, custom web dashboards, and
mobile apps for real-time visualization, alerting, and
data archival. Typical challenges reported include
sensor calibration and drift, sampling strategy vs.
battery life, network reliability and QoS (Quality of
Service), time synchronization, and the handling of
privacy and security in educational settings. Recent
works also highlight reproducible data pipelines
(CSV (Comma-Separated Values) / JSON (JavaScript
Object Notation) exports, REST (Representational
State Transfer endpoints), interoperable messaging, and
comparative evaluations of accuracy and latency under
classroom-like dynamics (occupancy changes,
door/window events). This chapter situates the present
study within these trajectories, distilling common
architectures, trade-offs, and best practices that inform
our subsequent design and implementation choices.

The paper [4] reports a low-cost IoT air-quality
node that couples an ATmega328 master with an
ESP8266 Wi-Fi coprocessor, integrating MQ135 gas
sensing and DHT11 temperature/humidity to stream
calibrated measurements to a cloud dashboard
(Blynk/ThingSpeak) and trigger threshold-based alerts;
communication is handled via software-serial, and the
authors validate an end-to-end pipeline from sensing to
web visualization on a functional prototype.

A closely related strand of work is the IoT-enabled
environmental control for small cultivation spaces, [5]
present a low-cost mini-farm built around an ESP8266
(NodeMCU) that acquires temperature and humidity

from dual DHT11 sensors and exposes both monitoring
and actuation (brushless fan, thermoelectric cooler,
ultrasonic mist) through a Blynk mobile dashboard;
power delivery (12 V rails, LM317 regulation) and a
relay/ESC (Electronic Speed Controller) stage enable
closed-loop thermal–humidity management, validated
with a two-week dataset and step-wise scenarios
(monitor-only, TEC (Thermoelectric Cooler) on, TEC
+ ice packs) showing measurable set-point correction
and stability improvements.

[6] presents the design and prototyping of an
industrial temperature monitoring system built around
a NodeMCU ESP8266 and a DS18B20 digital
thermometer, using MQTT for lightweight publish–
subscribe messaging and Node-RED for visualization.
A Raspberry Pi 3B+ hosts the Mosquitto broker and the
Node-RED dashboard, while the ESP8266 node
periodically publishes temperature readings (every 10
seconds) to a designated topic; data are shown both on
a serial console and via web gauges/plots. The authors
outline hardware and software components (ESP8266
characteristics, DS18B20 1-Wire interfacing, Arduino
IDE (Integrated Development Environment)
workflow), detail the system architecture and Node-
RED flows, and report low-latency, low-bandwidth
operation in the prototype. They conclude by proposing
future extensions such as adding more sensor types and
nodes and powering the system with green energy.

The paper [7] presents an ESP8266-based air-
quality station that measures PM2.5 alongside
temperature, relative humidity, and CO, and streams
results to Google Sheets with dashboards in Google
Data Studio for visual analysis. The prototype uses
NodeMCU (ESP8266) with low-cost sensors (dust
sensor, DHT11, MQ-series gas sensor) and a simple
flow from acquisition to cloud visualization, enabling
real-time monitoring and alerting. In month-long trials,
PM2.5 readings were compared against Thailand’s
Air4Thai reference data, yielding average percentage
differences of ~3.9% for PM2.5 and acceptable
deviations for temperature/humidity, indicating
adequate accuracy for community monitoring. The
authors highlight practical deployment considerations
(site selection, seasonality effects) and argue that the
low cost and ease of integration make the approach
suitable for broader urban or campus deployments.

The authors of [8] present a low-cost IoT solution
for data-center temperature supervision built around an
ESP8266-based wireless sensor network that streams
multi-point readings to a Ubidots cloud dashboard with
real-time SMS/email alerts when thresholds are
exceeded. The prototype uses DHT11/DHT22
sensors—deployed redundantly per location for data
validation—wired to ESP8266 nodes that handle both
on-board processing (firmware developed in the
Arduino IDE) and Wi-Fi connectivity to a router acting
as the WSN access point. Temperature data are posted
at minute-level intervals, visualized on the cloud, and
drive configurable multi-level alarms; a >24-hour run
demonstrated stable operation and timely notifications
during induced thermal excursions, highlighting
reduced total cost of ownership versus XBee/Arduino
architectures.

Design and Implementation of an ESP8266-Based IoT System for Real-Time Classroom Environmental
Monitoring

11

III. MONITORING SYSTEM HARDWARE
ARCHITECTURE

This section describes the physical architecture of
the hardware platform implements a compact,
networked sensing node designed for continuous,
classroom-scale environmental monitoring. At its core,
the system couples a Wi-Fi–enabled microcontroller
with a heterogeneous sensor suite and a minimal set of
actuators, delivering local feedback (LCD (Liquid
Crystal Display) / buzzer) and remote telemetry over
IEEE 802.11 b/g/n. The architecture emphasizes low
bill-of-materials cost, simple assembly, and electrical
robustness (level-compatible interfaces, shared
reference ground, decoupled rails), while preserving
measurement fidelity through appropriate signal
conditioning and wiring discipline.

The processing and communication substrate is a
NodeMCU development board built around the
ESP8266EX SoC (System on Chip). This device
provides a 32-bit Tensilica MCU (Microcontroller
Unit), integrated 2.4𝐺𝐻𝑧 Wi-Fi MAC (Media Access
Control) / PHY (Physical Layer), up to
160𝑀𝐻𝑧	 clocking, GPIO (General-Purpose
Input/Output) with interrupt capability, a 10-bit ADC
(Analog-to-Digital Converter) (A0), and I²C (Inter-
Integrated Circuit) / SPI (Serial Peripheral Interface) /
UART (Universal Asynchronous Receiver-
Transmitter) peripherals. In the proposed topology, the
ESP8266 orchestrates periodic sampling, debounced
event detection, local rule-based actuation, and
MQTT/HTTP publishing. Timer-driven tasks and
interrupt service routines are used to separate
deterministic acquisition from asynchronous network
activity [9].

The sensing layer targets the principal variables of
indoor environmental quality and occupancy. For
clarity, the main transducers and their electrical
interfaces are enumerated below.

• Temperature/Humidity (DHT11): one-wire
digital protocol to a GPIO pin; sampling period
2𝑠 ÷ 5𝑠 to remain within the sensor’s
recommended duty cycle. The module’s pull-
up resistor is placed near the MCU to improve
line integrity [10].

• Combustible gas/smoke (MQ-2): analog
voltage proportional to gas concentration,
routed to A0 through a resistor divider matched
to the ESP8266’s ~1.0𝑉 ADC range; the
heater element is powered from 5𝑉 with warm-
up time accounted for in firmware [11].

• Ambient illuminance (LDR (Light
Dependent Resistors) / KY-018): passive
photoresistor in a voltage divider, read by A0
in a time-multiplexed scheme with the MQ-2
(firmware arbitrates ADC access and applies
per-channel calibration curves) [12].

• Acoustic level (KY-038): digital threshold
output (DO) to a GPIO for noise events;
optional analog channel (AO) can be profiled
during calibration, but routine operation favors

the debounced DO to limit ADC contention
[13].

• Vibration/Shock (SW-420): digital
comparator stage delivers a clean logic output
to a GPIO; an RC (Resistor–Capacitor)
network provides chatter suppression at the
source [14].

• Proximity/Distance (HC-SR04): ultrasonic
ranging with distinct TRIG/ECHO pairs; echo
is captured via interrupt-timestamping to
improve time-of-flight precision. One unit
supports door/approach detection, the other
coarse occupancy sensing [15].

The HMI (Human–Machine Interface) and
actuation elements provide immediate, in-room
feedback and automated mitigation:

• LCD 16×2 (HD44780 with I²C backpack):
connected to the ESP8266 via SDA/SCL; the
I²C expander lowers pin count and permits bus
co-existence with other I²C devices. The
display presents current measurements, alarm
states, and network status [16].

• Active buzzer: driven from a GPIO through a
current-limiting resistor for audible alarms
under threshold violations (e.g., excessive
temperature or gas concentration) [17].

• Relay module + 𝟗𝑽 DC fan: a transistor-
isolated, opto-coupled relay board switches the
fan supply under firmware control; flyback
protection and separate 5𝑉 relay rail avoid
MCU brown-outs during coil energization [18],
[19].

The power-delivery network is built around a step-
down DC–DC (Direct Current to Direct Current) buck
converter that derives regulated 5𝑉 from a higher input
source; the ESP8266 and all 3.3𝑉-only peripherals are
supplied either from the NodeMCU’s on-board
regulator or a dedicated LDO, while high-draw loads
(relay coil, sensor heaters, LCD backlight) remain on
the 5𝑉 rail. All modules share a single reference
ground; local 100𝑛𝐹 decouplers are placed at each
device, and star-ground routing minimizes return-path
interference. Signal-integrity precautions include short
TRIG/ECHO leads, series resistors on fast GPIO lines,
and ADC anti-alias filtering where applicable [20].

From a systems viewpoint, the node executes a
deterministic acquisition loop (sensor polling, time-
stamped aggregation, plausibility checks) and a
supervisory layer that handles alarm logic and network
telemetry. Raw and derived metrics are rendered on the
LCD, while event flags trigger the buzzer and relay.
The ESP8266’s network stack batches payloads to
reduce channel occupancy and applies reconnection
back-off to maintain graceful behavior in congested
Wi-Fi environments.

The wiring diagram synthesizing the above
interconnections—controller, sensors, HMI, relay-
driven fan, and power module—is shown in Figure 1.

Stanciu Dumitru-Cǎtǎlin, Dinicǎ Rǎzvan-Andrei, Drǎguşin Sebastian-Alexandru, Bizon Nicu

12

Figure 1. ESP8266-based classroom monitoring node:
wiring diagram

IV. SYSTEM SOFTWARE DESIGN
This chapter details the embedded and desktop

software that enables end-to-end acquisition, transport,
visualization, and supervisory control. The design
follows a layered approach — sensor/actuator drivers
→ data fusion & event logic → Wi-Fi transport → GUI
presentation & control — to ensure determinism on the
microcontroller and responsive interaction in the user
interface.

A. ESP8266 IoT firmware
The ESP8266 firmware is implemented as a non-

blocking state machine in Arduino IDE (C/C++), using
𝑠𝑒𝑡𝑢𝑝()	 for one-time initialization and 𝑙𝑜𝑜𝑝()	 for
cyclic tasks scheduled with 𝑚𝑖𝑙𝑙𝑖𝑠() timers [21]. The
main software responsibilities are sensor sampling, data
conditioning, local alarms, Wi-Fi telemetry, and
reception of remote commands (fan, LEDs, buzzer).

& Initialization. On boot the MCU configures
GPIO/ADC pins, initializes peripheral libraries
(DHT, ultrasonic, MQ-2, LDR, SW-420, LCD,
buzzer, relay), loads threshold values from
flash (if present), and establishes a Wi-Fi
connection (station mode) with exponential
back-off and watchdog resets on persistent
failure.

& Acquisition & conditioning. Each sensor has
its own sampling period (e.g., 1𝑠 ÷ 2𝑠 for
DHT, 100𝑚𝑠 ÷ 200𝑚𝑠 for
acoustic/vibration/ultrasonic,
250𝑚𝑠 ÷ 500𝑚𝑠 for LDR/MQ-2). Readings
are debounced and filtered with a short
moving-average; boolean events (noise spike,
vibration) use hysteresis and minimum hold
times to avoid chatter. A lightweight
plausibility check (range, NaN) guards against
spurious values.

& Event logic (edge computing). The firmware
evaluates rules locally to ensure timely reaction
without network dependency:

— over-temperature or high gas → relay-
driven fan ON and buzzer alert.

— excessive noise or detected vibration →
buzzer pulse.

— proximity events → optional actions (e.g.,
door logic).

— Events are time-stamped (epoch ms) to
support GUI timelines.

& Telemetry & remote control. Measurements
are serialized as a compact JSON/CSV frame
and pushed over Wi-Fi using a simple REST
POST or a persistent TCP (Transmission
Control Protocol) socket (both options
supported in the codebase). A typical JSON
frame is:

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

"t": 23.8,
"rh": 41.2,
"gas": 178,
"light": 0.62,
"sound": 0,
"dist": 123,
"vib": 0,
"fan": 1,
"buzz": 0,

"ts": 1712665234123

The firmware also subscribes to short
command messages (e.g.,
{"𝑓𝑎𝑛": 0, "𝑏𝑢𝑧𝑧": 1}), validates them, and
applies actuator updates with acknowledgment.
All I/O (Inputs/Outputs) is non-blocking; time-
critical paths use interrupts only where
unavoidable.

Design and Implementation of an ESP8266-Based IoT System for Real-Time Classroom Environmental
Monitoring

13

& Reliability & security. A reconnect routine
restores links after AP (Access Point) changes;
sequence numbers prevent out-of-order GUI
updates; optional checksum guards payload
integrity. For campus/LAN (Local Area
Network) deployments, WPA2 (Wi-Fi
Protected Access) plus an application token in
the header is used; TLS (Transport Layer
Security) can be enabled on capable toolchains.

B. MATLAB-based GUI
The desktop application is built in MATLAB as a

virtual instrument that fuses data streams, renders real-
time charts, logs datasets, and issues supervisory
commands. The GUI, shown in Figure 2, opens a
listener/socket (or polls an HTTP endpoint) to ingest
MCU frames, parses the payload, and updates numeric
indicators and strip-charts for Temperature, Humidity,
Gas, Light, Sound, Distance, Vibration. Control
widgets (buttons/toggles) publish JSON commands
back to the ESP8266 for Fan/LED/Buzzer actuation.

Figure 2. MATLAB GUI for real-time visualization and
supervisory control of the ESP8266 classroom monitor

V. RESULTS
To evaluate the proposed IoT monitoring platform,

we followed a staged test plan that combined bench
validation with in-situ trials in a classroom mock-up.
First, each sensing channel (temperature/relative
humidity, gas, light, sound, vibration, ultrasonic
distance) was verified individually against reference
instruments and known stimuli (e.g., heat/cold packs,
aerosol from a test spray, calibrated light and acoustic
sources, discrete mechanical taps for the SW-420).
Next, the full stack—ESP8266 firmware, Wi-Fi
transport, and MATLAB GUI—was exercised end-to-
end to assess acquisition stability, time synchronization,
and command/actuation loops (fan via relay, buzzer,

Algorithmic flow (GUI):

1. Initialize UI components, networking object,
and a circular buffer for each channel.

2. On message arrival: validate frame → parse
fields → append to buffers → update numerical
readouts and redraw plots; outliers are flagged
but preserved in the log.

3. Compute derived metrics (e.g., rolling
mean/max over 1–5 min) for stable
visualization and annotate threshold crossings.

4. User actions (button presses) generate
command frames with timestamps and a
monotonic sequence; acknowledgments from
the ESP are reflected in the status lamp
(“System status” indicator).

5. Periodic tasks persist data to disk (MAT-files
or CSV) and refresh connection health.

LEDs). Particular attention was given to start-up
sequencing, reconnect logic after AP loss, and
resilience to burst traffic when multiple widgets in the
GUI simultaneously requested updates.

In continuous runs, the system sustained real-time
streaming with responsive plots and controls; the GUI
reflected state changes (e.g., fan ON/OFF, buzzer
alarms) without noticeable lag, and no material packet
loss was observed over extended logging sessions.
Under rapid environmental changes (door open/close,
directed airflow, localized sound bursts), the channels
exhibited coherent responses and recovered cleanly
after threshold-triggered alarms.

Stanciu Dumitru-Cǎtǎlin, Dinicǎ Rǎzvan-Andrei, Drǎguşin Sebastian-Alexandru, Bizon Nicu

14

The physical integration of sensors around the
miniature classroom facilitated repeatable scenarios
(occupant approach, excessive noise, increased
temperature), demonstrating that the platform can
support both monitoring and simple supervisory control
for indoor educational spaces.

Figure 3. Integrated GUI and physical testbed of the ESP8266-
based classroom environmental monitoring system

CONCLUSION

The study has presented a complete, low-cost IoT
platform for classroom environmental monitoring, built
around an ESP8266 node and a MATLAB graphical
interface.

After integration, the MATLAB GUI with live plots
and controls, together with the classroom mock-up

testbed (ESP8266 node, sensors, relay-driven fan,
LCD), can be observed in Figure 3, which we used to
validate real-time monitoring and actuation.

The hardware integrates multi-domain sensing—
temperature, humidity, gas concentration, light, sound,
vibration and distance—together with local feedback
and actuation via LCD, buzzer, LEDs and a relay-
driven fan. On the software side, a compact C/C++
firmware manages time-stamped acquisition and
reliable TCP transmission, while the MATLAB GUI

Design and Implementation of an ESP8266-Based IoT System for Real-Time Classroom Environmental
Monitoring

15

provides responsive visualization and supervisory
control through live plots, status indicators and
command buttons. Validation on a physical classroom
mock-up confirmed end-to-end operation: streams were
received in real time, commands were executed
deterministically, and the system remained stable
during extended runs with variable stimuli that emulate
occupied classroom conditions.

Despite these results, several constraints remain.
The current prototype operates as a single node, uses
unencrypted TCP transport and relies on manual sensor
calibration. Power delivery is bench-sourced rather than
optimized for long-term deployment, and the user
interface is desktop-bound, limiting accessibility and
multi-site management. Control policies are
intentionally simple and rule-based, and historical
analytics are confined to session-level inspection rather
than full life-cycle data management.

Future development will address these limitations
along three axes: sensing fidelity, secure scalability and
operational robustness. First, we plan to enrich the
sensing stack with CO₂ / TVOC (Total Volatile Organic
Compounds) and PM2.5 modules and to implement
temperature- and humidity-compensated self-
calibration, thereby improving air-quality inference and
longitudinal comparability. Second, the communication
layer will migrate to MQTT over TLS with certificate-
based authentication, augmented by over-the-air
firmware updates, watchdogs and structured telemetry
for remote diagnostics; multi-node synchronization and
aggregation will enable classroom- and building-level
views with measured latency, jitter and loss. Third, we
will replace ad-hoc rules with lightweight edge
intelligence for anomaly detection and occupancy
inference, and we will evaluate adaptive control
strategies for ventilation.

In parallel, the data pipeline will target a time-series
back end with role-based dashboards and programmatic
access, while the hardware will be consolidated on a
custom PCB (Printed Circuit Board) with EMI
(Electromagnetic Interference) / ESD (Electrostatic
Discharge) protection, fused power paths and efficient
DC–DC regulation housed in a classroom-ready
enclosure. A web-based client will replicate the
MATLAB interface to broaden access across devices.
Taken together, these directions outline a clear pathway
from a functional demonstrator to a secure, scalable and
analytically rich platform capable of supporting
evidence-based decisions on indoor environmental
quality and energy efficiency in schools.

REFERENCES
[1] G. Battista, S. Serroni, M. Martarelli, M. Arnesano, and G.

M. Revel, “Innovative measurements for Indoor
Environmental Quality (IEQ) assessment in residential
buildings,” 2022 IEEE International Workshop on
Metrology for Living Environment, MetroLivEn 2022 -
Proceedings, pp. 170–173, 2022, doi:
10.1109/METROLIVENV54405.2022.9826982.

[2] S.-A. Drăgușin, N. Bizon, R.-M. Teodorescu, D. Toma,
R.-N. Boștinaru, and G. Anghel, “Communication
Protocols in Embedded Systems for Automotive
Applications: Comparative Analysis and Implementation

Through Virtual Instruments,” pp. 1–8, Aug. 2025, doi:
10.1109/ECAI65401.2025.11095564.

[3] P. D.-I. , C. A.-A. B. N. D. S.-A. , B.-G. M.-L. BEȘLIU-
GHERGHESCU Andrei-A., “Interactive Educational
Platform Integrating Electronic Components into
Mathematics Courses for Numerical Computation,”
Journal of Electrical Engineering, Electronics, Control
and Computer Science, vol. 10, no. 1, pp. 13–20, Jan.
2025, Accessed: Oct. 12, 2025. [Online]. Available:
https://jeeeccs.net/index.php/journal/article/view/366

[4] P. K. Malik, A. S. Duggal, S. Aluvala, R. Sahithi,
Geetanjali, and A. Gehlot, “Development of a low-cost
IoT device using ESP8266 and Atmega328 for real-time
monitoring of Outdoor Air Quality with Alert,” 2023 3rd
International Conference on Advancement in Electronics
and Communication Engineering, AECE 2023, pp. 125–
129, 2023, doi: 10.1109/AECE59614.2023.10428098.

[5] M. S. Shafri Shaiful, R. Ambar, M. H. Abd Wahab, and M.
M. Abd Jamil, “IoT-based Data Monitoring and
Environment Controlling System for Oyster Mushroom
Mini-farm,” IVIT 2022 - Proceedings of 1st International
Visualization, Informatics and Technology Conference,
pp. 309–316, 2022, doi:
10.1109/IVIT55443.2022.10033410.

[6] P. S. B. MacHeso, T. D. Manda, A. G. Meela, J. S. Mlatho,
G. T. Taulo, and J. C. Phiri, “Industrial Temperature
Monitor Based on NodeMCU ESP8266, MQTT and Node-
RED,” Proceedings - 2021 3rd International Conference
on Advances in Computing, Communication Control and
Networking, ICAC3N 2021, pp. 740–743, 2021, doi:
10.1109/ICAC3N53548.2021.9725469.

[7] P. Saeng-On, N. Thaitae, and S. Sonasang, “Development
of monitoring PM2.5 based on IoT and Google Data
Studio,” Proceeding - 2023 International Electrical
Engineering Congress, iEECON 2023, pp. 64–67, 2023,
doi: 10.1109/IEECON56657.2023.10126631.

[8] S. Saha and A. Majumdar, “Data centre temperature
monitoring with ESP8266 based Wireless Sensor Network
and cloud based dashboard with real time alert system,”
Proceedings of 2nd International Conference on 2017
Devices for Integrated Circuit, DevIC 2017, pp. 307–310,
Oct. 2017, doi: 10.1109/DEVIC.2017.8073958.

[9] “ESP8266 Wi-Fi SoC | Espressif Systems.” Accessed:
Oct. 12, 2025. [Online]. Available:
https://www.espressif.com/en/products/socs/esp8266

[10] D-Robotics, “DHT11 Humidity & Temperature Sensor”.
[11] “MQ-2 Semiconductor Sensor for Combustible Gas”.
[12] “KY-018 Photoresistor module KY-018 Photoresistor

module Contents”, Accessed: Oct. 12, 2025. [Online].
Available: https://github.com/adafruit/Adafruit-
Raspberry-Pi-Python-Code]

[13] “KY-038 Microphone sound sensor module KY-038
Microphone sound sensor module Contents”.

[14] “Handson Technology User Guide SW-420 Vibration
Sensor Module”, Accessed: Oct. 12, 2025. [Online].
Available: https://handsontec.com

[15] “Ultrasonic Ranging Module HC-SR04”, Accessed: Oct.
12, 2025. [Online]. Available: www.Elecfreaks.com

[16] “Handson Technology User Guide I2C Serial Interface
1602 LCD Module”, Accessed: Oct. 12, 2025. [Online].
Available: www.handsontec.com

[17] “Active Buzzer Module”, Accessed: Oct. 12, 2025.
[Online]. Available: www.handsontec.com

[18] Wakefield-, “Wakefield-Vette Revision A DC FANS”.
[19] “1 Channel 5V Optical Isolated Relay Module”, Accessed:

Oct. 12, 2025. [Online]. Available: www.handsontec.com
[20] “LM2596 SIMPLE SWITCHER ® Power Converter 150-

kHz 3-A Step-Down Voltage Regulator,” 2023, Accessed:
Oct. 12, 2025. [Online]. Available: www.ti.com

[21] D. K. Halim, T. C. Ming, N. M. Song, and D. Hartono,
“Arduino-based IDE for embedded multi-processor
system-on-chip,” Proceedings of 2019 5th International
Conference on New Media Studies, CONMEDIA 2019, pp.
135–138, Oct. 2019, doi:
10.1109/CONMEDIA46929.2019.8981862.

Stanciu Dumitru-Cǎtǎlin, Dinicǎ Rǎzvan-Andrei, Drǎguşin Sebastian-Alexandru, Bizon Nicu

16

