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Abstract –Embedded systems have become fundamental 
to modern technological infrastructures, powering 
applications from smart vehicles and medical devices to 
critical industrial control. However, their rapid 
integration into the IoT (Internet of Things) ecosystem 
has significantly expanded the attack surface, exposing 
them to a wide range of cybersecurity threats. This paper 
provides a structured review of attack techniques 
targeting embedded systems, including fuzzing, 
reconnaissance, shellcode injection, denial-of-service, 
and backdoor exploitation. Furthermore, it discusses the 
role of AI (Artificial Intelligence) in early anomaly 
detection and predictive threat modeling. By comparing 
traditional and AI-enhanced security mechanisms, the 
paper highlights both the advantages and limitations of 
current defense strategies. The analysis emphasizes the 
growing importance of adaptive, data-driven models 
capable of operating under resource-constrained 
embedded environments, proposing a synthesis of 
theoretical and practical advances in securing embedded 
architectures. 
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I.  INTRODUCTION  
The security of embedded systems has become a 

topic of major importance in today's technological 
context. Embedded systems, defined as 
microprocessor-controlled devices that perform 
specific functions in a larger ensemble, are ubiquitous 
in our daily lives. They are found in medical devices, 
vehicles, household appliances, industrial equipment 
and critical infrastructures, thus influencing many 
aspects of modern society [1], [2]. 

In recent years, the number of embedded devices 
connected to global networks has grown exponentially 
due to the rise of IoT. It is estimated that by the end of 
2025 there will be more than 75 billion devices 
connected to the internet, offering multiple advantages 
but at the same time expanding the attack surface for 
cybercriminals. This massive increase in connectivity 
brings with it significant challenges in terms of the 
security of these systems [3]. 

Embedded systems are essential for the operation of 
critical infrastructures such as power grids, 
transportation systems, and communications. A 
cyberattack on these systems can have devastating 
consequences, from service interruptions to massive 
economic losses and risks to public safety. These 
systems are often designed for very specific tasks and 
operate in resource-constrained environments. This 
specific complexity makes security difficult to 
implement and maintain, requiring customized 
solutions and a deep understanding of the operational 
context [1], [2]. 

The security of embedded systems is essential for 
data protection and privacy. Embedded devices collect 
and manage large amounts of data, including sensitive 
personal information. Ensuring the security of this data 
is crucial for preventing unauthorized access and 
protecting the confidentiality of information. In many 
critical applications, such as medical or industrial, the 
reliability of embedded systems is vital. Cybersecurity 
helps ensure that these systems operate continuously 
and without interruption, preventing failures that can 
have serious consequences [1], [2]. 

Embedded systems are attractive targets for 
cyberattackers who can exploit vulnerabilities to take 
control, steal data, or sabotage the operation of devices. 
Implementing robust security measures is crucial to 
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prevent these attacks and protect the integrity of 
systems. However, implementing security in embedded 
systems involves several unique challenges. Resource 
limitations, such as processing capacity and energy 
consumption, require efficient and optimized security 
solutions. Also, the rapid evolution of technologies and 
cyber threats requires constant adaptability and regular 
updates of protection mechanisms [4]. 

The use of AI in anomaly detection and forecasting 
is an innovative and essential approach in the modern 
context of cybersecurity and embedded systems. 
Anomalies, defined as deviations from the expected 
behavior of a system, can indicate the presence of 
malfunctions, errors or even cyberattacks. Early and 
accurate detection of these anomalies is crucial for 
maintaining the integrity and reliability of critical 
systems [5], [6]. 

One of the main motivations for adopting AI in this 
field is its ability to process and analyze large volumes 
of data in real-time. Embedded systems are constantly 
generating operational data, and manually analyzing 
this data would be extremely laborious and inefficient. 
ML (Machine Learning) algorithms can identify 
complex patterns and detect anomalies with much 
greater accuracy and speed than traditional methods [6]. 

AI also provides flexibility and adaptability in the 
face of an ever-changing threat landscape. ML models 
can be trained to recognize new types of attacks or 
anomalies based on historical data and recent 
developments. It allows for continuous updating and 
improvement of detection mechanisms, providing a 
significant advantage in the fight against emerging 
threats [6]. 

Another key aspect of using AI is its ability to 
forecast anomalies before they fully manifest. 
Predictive algorithms, such as neural networks and 
regression models, can predict potential problems based 
on trends and patterns observed in operating data. This 
allows for proactive interventions and preventive 
measures, minimizing the negative impact on the 
system and reducing downtime [5]. 

AI is also helping to reduce false alarms, which are 
a common problem in anomaly detection systems. By 
continuously refining algorithms and using advanced 
classification techniques, AI can more effectively 
differentiate between legitimate activities and 
suspicious behaviors, thereby improving the accuracy 
and relevance of the alerts generated [7]. 

In Figure 1, the number of papers indexed by 
Scopus in the period 2021-2025 on the topic of anomaly 
detection in security systems is graphically presented. 

TITLE-ABS-KEY (anomaly AND detection AND 
security AND systems) 

In addition to a theoretical introduction, this paper 
provides in Section II a comprehensive literature review 
of recent research addressing cyberattack techniques 
and AI-based anomaly detection in embedded systems. 
Section III presents the theoretical foundations 
underlying cybersecurity mechanisms and modeling 
principles, while Section IV details the concepts of 
anomalies and malformations within cyberattack 

models, emphasizing their detection and interpretation 
in intelligent embedded contexts. Finally, paper 
outlines the main conclusions and future research 
directions, summarizing key findings and identifying 
open challenges in securing embedded architectures. 

Figure 1. Papers published in 2021-2025 on the detection of 
anomalies in security systems 

II. LITERATURE REVIEW 
[8] provides an extensive synthesis of embedded 

device security analysis, describing the dynamic vs. 
static landscape (with a focus on QEMU (The Quick 
Emulator) emulation and web interface fuzzing), the 
issue of re-hosting monolithic and kernel-level 
firmware, as well as the current challenges—end-to-end 
automation, low dynamic analysis throughput, and 
scaling to large batches of firmware—thus outlining 
concrete directions for future research. 

The authors [9] conduct a comprehensive survey of 
anomaly detection in IoT, proposing a multi-layer 
taxonomy (types/sources of anomalies, learning 
frameworks), comparing computing platforms (cloud, 
fog, edge, hybrid) and methodologies (information-
theory, graph-/spectral-based, blockchain, ML/DL 
(Deep Learning), AE (Autoencoder), RNN (Recurrent 
Neural Network)/LSTM (Long Short-Term Memory), 
CNN (Convolutional Neural Network), GAN 
(Generative Adversarial Network), plus evolutionary, 
RL (Reinforcement Learning) and ensemble), and 
systematizing datasets (NSL-KDD (Network Security 
Laboratory-Knowledge Discovery Dataset), BoT-IoT 
(Botnet Internet of Things Dataset),  CICIDS2017 
(Canadian Institute for Cybersecurity Intrusion 
Detection System 2017), UNSW-NB15 (University of 
New South Wales Network-Based Dataset 2015), 
Yahoo Webscope) and metrics (Precision, Detection 
Rate, FPR (False Positive Rate), ROC-AUC (Receiver 
Operating Characteristic-Area Under Curve), F1). The 
paper highlights challenges (reducing complexity, 
environmental/architectural constraints, privacy and 
interpretability, lack of adequate datasets) and future 
directions (XAI (Explainable Artificial Intelligence), 
edge-intelligence, self/weak supervision, Transformers, 
digital twin). 

The paper [10] conducts an analytical review of the 
security of embedded systems, identifying 12 factors 
influencing CSES (Cybersecurity of Embedded 
Systems) – from features, implementation and 
connectivity protocols, to attack surfaces, impact and 
actors – and proposes the 9-layer MuLFESC (Multi-
Layered Framework for Embedded Systems 
Cybersecurity) framework for security-by-design and 
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new risk metrics, providing a coherent roadmap for 
assessing and strengthening defense at the hardware–
software–network level. 

In the paper [11] a systematic literature mapping on 
AIoT/TinyML for the detection of anomalies on the 
MCU (Microcontroller Unit) is proposed, synthesizing 
18 studies (2021–2023) and providing a taxonomy of 
algorithms (CNN, Autoencoder, LSTM, GMM 
(Gaussian Mixture Model), IF (Isolation Forest), TEDA 
(Typicality and Eccentricity Data Analysis), HyBNN 
(Hybrid Bayesian Neural Network), LSH (Locality-
Sensitive Hashing)), methods/metrics (Accuracy, F1, 
AUC, RMSE (Root Mean Square Error)), platforms 
(Raspberry Pi, STM32, ESP32, Arduino, Jetson) and 
architectures (edge/fog/cloud), with benefits (low 
latency, increased privacy) and notable gaps (lack of 
dataset standardization, modest power reporting, 
absence of LoRaWAN (Long Range Wide Area 
Network)/5G connections, few real-time deployments). 

Paper [12] conducts a comprehensive review of 
CPS (Cyber-Physical Systems) security in the context 
of 5G and Beyond 5G technologies, analyzing the 
architecture, threats, and security solutions associated 
with authentication, access, and encryption. The paper 
describes a complete taxonomy of attacks (DoS (Denial 
of Service), spoofing, data tampering, replay, 
injection), includes CPS threat models based on ISO 
(International Organization for Standardization)/IEC 
(International Electrotechnical Commission) 
27001:2013 and presents a synthesis of the most 
important industrial incidents (Stuxnet, Ukraine Attack, 
Jeep Hack). The authors propose a multi-dimensional 
analysis framework: cyber-attack emanation, 
prototyping, detection and architecture design and 
correlate these aspects with emerging technologies (AI, 
blockchain, PUF (Physically Unclonable Function), 
ML/DL) for securing 5G/6G-enabled CPS applications, 
outlining future research directions related to physical-
layer security, adaptive AI defenses and low-latency 
protection mechanisms. 

A comprehensive survey of deep learning models 
for anomaly detection is presented in [13], covering 
architectures (CNN/RNN/LSTM, Autoencoders, 
GAN), standard datasets, and evaluation metrics, 
describing IDS (Intrusion Detection System) 
taxonomies (HIDS (Host-based Intrusion Detection 
System)/NIDS (Network-based Intrusion Detection 
System)), adversarial attacks, an end-to-end detection 
pipeline, and current challenges (generalization, class 
imbalance, interpretability), with future directions 
towards hybrid models, hardware acceleration, and 
XAI. 

III. THEORETICAL FOUNDATIONS 
In this section, the main attack techniques used in 

embedded systems are presented. These attacks, which 
include Fuzzers, Analysis, Backdoors, DoS, Exploits, 
Generic, Reconnaissance, Shellcode, and Worms. 
Understanding these techniques is essential to ensuring 
the security and integrity of computer systems. Each of 
these techniques represent specific methods by which 
attackers can compromise systems, either by exploiting 

software vulnerabilities or by infiltrating and 
manipulating them for malicious purposes. The analysis 
of these techniques allows the development of more 
effective defense strategies and the implementation of 
appropriate preventive measures in the face of cyber 
threats. 

A. Fuzzers Attacks 
A "Fuzzing" attack is a method used in 

cybersecurity to test and discover vulnerabilities in 
software. This process involves sending randomly 
generated or deliberately invalid data to applications, 
protocols, or systems to cause errors or unexpected 
behaviors that may reveal exploitable bugs [14], [15], 
[16].  

Fuzzing attacks (types) can be classified as follows: 

& Mutational Fuzzing: It modifies existing data 
in a random way to create new and unexpected 
inputs. For example, it can modify data 
packages or input files to test the robustness of 
the application [17]. 

& Generative Fuzzing: Builds entirely new 
inputs based on protocol or data format 
specifications. Especially useful for testing 
applications with structured inputs, such as 
network protocols or file formats [18]. 

& Protocols Fuzzing: Focuses on sending invalid 
or altered data packets to applications that use 
network protocols. An example is sending 
modified TCP/IP (Transmission Control 
Protocol/Internet Protocol) packets to test 
network stacks [19]. 

& Fuzzing file formats: Create and open 
corrupted files to test the parsers and decoders 
of the applications that process these files. For 
example, a fuzzer can generate malformed 
JPEG image files to test the applications that 
open them [20]. 

Fuzzing provides a simple and effective test design, 
requiring no detailed knowledge of the internal 
behavior of the tested system, which makes it 
recommended for "black box" testing. The method is 
particularly useful for identifying unexpected errors and 
exploitable bugs that can escape manual testing, helping 
to quickly discover vulnerabilities in firmware and 
protocol stacks. In contexts where the system is closed 
or incubated in a heterogeneous environment, fuzzing 
remains one of the most practical automated techniques 
for exploring the attack surface [14], [15], [16]. 

Despite its usefulness, fuzzing tends to identify 
mainly simple errors and does not always assess the full 
impact of discovered vulnerabilities; Many detected 
cases require further analysis to determine actual 
exploitability. Also, to achieve adequate coverage of 
the input space, fuzzing can require significant 
computational resources and time, while generating a 
high volume of false alarms that require manual triage 
and prioritization effort [14], [15], [16]. 

Among the most popular fuzzing tools are SPIKE 
and Wireshark, which are used to test network protocols 
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and applications. SPIKE, for example, is a fuzzer 
creation kit based on the C programming language, 
which allows the generation of "fuzzed" messages to 
induce errors in network services [21], [22], [23]. 

B. Analysis Attacks 
The "Analysis" attack, in the context of 

cybersecurity, refers to different methods and 
techniques used to analyze computer systems to 
identify vulnerabilities, abnormal behavior and 
potential attacks. This category encompasses various 
methods, from analyzing source code to monitoring 
network traffic and evaluating executable behavior 
[24], [25].   

The types of Analysis in cybersecurity are as 
follows: 

& Static analysis is the process of examining 
source code or binaries without executing 
them, to identify vulnerabilities, logical errors, 
or deviations from security standards. This 
method is based on the inspection of syntax, 
data structures and control flows, and is used in 
the early stages of development to prevent 
exploitation in production environments. 
Through automated static analysis tools, 
critical vulnerabilities such as buffer overflow, 
SQL (Structured Query Language) injection or 
XSS (Cross-Site Scripting) can be detected, 
making it essential in the security-by-design 
process and in the evaluation of the code before 
the final integration of the system [26]. 

& Dynamic analysis consists of examining the 
behavior of a program during its execution, 
tracking how it uses system resources and 
interacts with other hardware or software 
components. Unlike static analysis, this method 
allows you to identify vulnerabilities and bugs 
that only manifest themselves during runtime, 
such as runtime issues, heap spray, or malicious 
behavior hidden in executables. By monitoring 
performance, memory consumption, and 
execution flow, dynamic analytics provides a 
practical insight into application stability and 
security and is essential for validating 
protection mechanisms in real-world 
environments [27]. 

& Behavioral analysis is based on observing and 
interpreting the actions of users, processes, and 
components of a system, with the aim of 
identifying unusual or suspicious activity that 
may indicate a compromise. This method is 
essential for detecting attacks that cannot be 
recognized by static signatures, such as zero-
day attacks or subtle behavioral exploits. By 
monitoring access logs, analyzing network 
traffic, and applying machine learning 
algorithms to recognize deviant patterns, 
behavioral analytics provides an additional 
layer of proactive protection, enabling early 
identification of emerging threats and 
continuous adaptation of security policies [28]. 

& Forensic analysis involves the systematic 
collection, preservation and examination of 

digital evidence after a security incident, with 
the aim of reconstructing the sequence of 
events, identifying attack vectors and 
determining the extent of the compromise. This 
includes techniques such as examining volatile 
memory, analyzing files on disks, investigating 
network artifacts, and interpreting system logs 
to reconstruct the attacker's steps and the 
mechanisms used. The main advantage lies in 
the ability to provide actionable evidence for 
remediation and improvement of defensive 
strategies identifying weaknesses and 
persistence mechanisms as well as supporting 
legal procedures where appropriate. Practical 
examples include extracting memory images 
for rootkit detection, analyzing system 
timelines to correlate events, and investigating 
captured packets to track data exfiltration 
channels [29]. 

C. Backdoors Attacks 
"Backdoors" attacks are methods by which an 

attacker creates or uses a hidden way of accessing a 
computer system, bypassing standard authentication 
and security mechanisms. These attacks are particularly 
dangerous because they allow continuous unauthorized 
access that is difficult to detect and remove [30]. 

The associated definitions and types of Backdoors 
are presented as follows: 

& Classic backdoors are deliberate mechanisms 
or compromise results that provide hidden 
access to a system, being integrated either at the 
software level (source code, modules, 
components from installation packages) or at 
the hardware level (microcode, IP (Internet 
Protocol) compromised blocks). They can be 
intentionally introduced by malicious 
developers or later inserted by exploiting 
vulnerabilities or in the supply chain, ensuring 
persistence and a discreet path for attackers. 
Typical examples include commands hidden in 
the code, unauthorized user accounts, modified 
binary components, or malicious code 
distributed through a legitimate update, all of 
which have the potential effect of remote 
control and data exfiltration without immediate 
detection [31]. 

& Rootkits are a specialized class of backdoors 
designed to hide the attacker's presence in the 
system, often intervening at the kernel or user-
mode level to mask processes, files, network 
connections, and log entries that could signal 
compromise. Common techniques include 
hooks in system calls, DKOM (Direct Kernel 
Object Manipulation), binary image changes, 
or kernel module replacements, all to ensure 
persistence and privilege theft. Rootkits are 
widely used to maintain privileged access on 
compromised systems and pose a major 
challenge to detection, as they can undermine 
traditional monitoring and antivirus tools, often 
requiring advanced forensics and hardware-
level integrity techniques to identify and 
eradicate [32]. 
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& Hardware backdoors are unauthorized access 
mechanisms or functionality integrated directly 
into the physical layer of the device—from IP 
blocks or microcode to FPGAs (Field-
Programmable Gate Arrays), bitstreams, and 
custom circuits—that allow attackers to bypass 
security software controls altogether and gain 
access, persistence, or exfiltration capabilities. 
These backdoors can occur through deliberate 
insertions into the supply chain (compromising 
third-party Ips (Internet Protocols) or the 
manufacturing process), microcode changes, or 
unprotected hardware configurations (e.g., 
accessible JTAG (Joint Test Action Group) 
debug ports) and are particularly dangerous 
because they affect the physical integrity of the 
platform and are extremely difficult to detect 
and remove. Their detection requires advanced 
techniques (hardware fingerprinting, side-
channel analysis, silicon-level verifications and 
hardware attestation mechanisms such as PUF 
(Physically Unclonable Function)/secure boot), 
and preventive measures are based on robust 
supply-chain security processes, production 
integrity checks and security-by-design design 
[33]. 

D. DoS Attacks 
The "DoS" attack is a method of cyberattack that 

aims to disrupt or disrupt the services provided by a 
network, server or other IT infrastructure, making them 
inaccessible to legitimate users. These attacks are 
carried out by flooding the target with a large volume 
of traffic or by exploiting specific vulnerabilities, 
leading to the exhaustion of the target system's 
resources. A DoS attack aims to make an IT service 
unavailable to its legitimate users by excessively 
consuming the resources of the target system, either 
through massive traffic (flooding) or by exploiting 
software vulnerabilities. 

Types of DoS Attacks: 

& Flood Attacks: Flood attacks consist of 
generating a massive volume of traffic to a 
target resource (server, gateway, IoT device) to 
overload its processing and service capacities, 
which leads to the degradation or unavailability 
of legitimate services. Representative examples 
are ICMP (Internet Control Message Protocol) 
Flood, in which ICMP packets are sent 
massively to flood the target interface, and 
SYN (Synchronize) Flood, which exploits the 
TCP (Transmission Control Protocol) 
connection establishment mechanism by 
sending many SYN packets without 
completing the handshake, thus consuming the 
server's state resources. In embedded and IoT 
environments, the effect of a flood can be 
amplified by hardware limitations (low buffer, 
weak CPU (Central Processing Unit)) and 
network topology (low-capacity 
hubs/gateways), which can trigger functional 
bottlenecks or severe telemetry losses. 
Defenses include packet filtering at the edge of 

the network, rate-limiting, SYN cookies, 
firewall/ACL (Access Control List) 
configurations, as well as "scrubbing" solutions 
at an edge/cloud layer; However, the 
application of these countermeasures on 
devices with low resources requires distributed 
and selective solutions to avoid the increase of 
false positives or the impact on legitimate 
functionality [34]. 

& Application-Layer DoS: Exploiting 
application-specific vulnerabilities to consume 
server resources. Examples include HTTP 
(Hypertext Transfer Protocol) GET/POST 
flood attacks [35]. 

& DDoS (Distributed Denial of Service): DoS 
attacks launched from multiple distributed 
sources, making them even harder to counter. 
These attacks are usually orchestrated through 
botnet networks [36]. 

E. Exploits Attacks 
An "Exploit" attack involves the use of 

vulnerabilities in software or hardware to compromise 
a computer system. These attacks are designed to 
exploit weaknesses in a system's security to gain 
unauthorized access, execute malicious code, or disrupt 
the normal operation of a device or application an 
exploit is a sequence of instructions, data, or actions that 
take advantage of a vulnerability in a computer system 
to achieve unforeseen or unauthorized behavior [37]. 

A classification of exploits can be listed: 

& Remote Exploits: Attacks that are launched 
remotely without physical access to the target 
system. These include exploiting 
vulnerabilities in network services or web 
applications [38]. 

& Local Exploits: Attacks that require physical 
access or authenticated access to the target 
system. Typically, they exploit vulnerabilities 
to escalate user privileges [39]. 

& Zero-Day Exploits: Attacks that exploit 
vulnerabilities unknown to the public or 
software developers at the time of the attack. 
These vulnerabilities do not yet have a patch 
available, which makes them particularly 
dangerous [40]. 

The exploitation process begins with the discovery 
of vulnerabilities, which can be achieved through 
security audits, penetration testing, static/dynamic 
analysis of the code or by behavioral monitoring of the 
system to identify anomalies that indicate a potential 
weakness. Once a vulnerability is identified, the 
attacker moves on to exploit development — 
specialized code that leverages that weakness to 
escalate privileges, bypass control mechanisms, or 
launch arbitrary execution. This is followed by the 
launch of the attack, which can occur either through 
network vectors (malicious packets, HTTP requests, 
protocol payloads) or through local access 
(compromised installation environments, physical 
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devices). Finally, obtaining the results may involve 
unauthorized access to resources, execution of 
malicious code, data exfiltration or disruption of the 
functionality of the system, the concrete effects 
depending on the nature of the vulnerability and the 
level of access obtained [37]. 

Specific exploitation techniques frequently include 
classic attacks such as buffer overflow, where data 
written beyond the boundaries of a buffer allows the 
return area to be overwritten and can lead to arbitrary 
code execution [41]; SQL injection, whereby malicious 
SQL commands are injected into queries to databases 
to obtain or modify unauthorized information [42]; and 
XSS, which introduces malicious JavaScript code into 
web pages so that it is executed in the context of 
legitimate users' browsers, making it easier to steal 
sessions or manipulate interfaces [43]. Each of these 
techniques requires specific stages of preparing and 
adapting the exploit to the target environment and is 
usually followed by additional steps to maintain 
persistence and trace coverage (post-exploitation). 

F. Generic Attacks 
In cybersecurity, the term "Generic" attack is used 

to describe a class of attacks that are not specific to a 
particular vulnerability but can be applied in a variety 
of scenarios to compromise computer systems. These 
attacks rely on common methods and techniques to 
exploit weaknesses in systems. A generic attack is a 
type of cyberattack that does not target a specific 
vulnerability but uses common techniques and methods 
to compromise the security of computer systems. These 
attacks are often automatic and can be tailored to work 
against a variety of targets [44]. 

Generic Attacks are defined by the following types: 

& Brute Force Attacks: These attacks involve 
trying all possible password combinations until 
you find the correct one. It is a classic example 
of a generic attack because it is not based on a 
specific vulnerability in the system, but on the 
weakness of user passwords. Studies show that 
brute force attacks are effective against systems 
that do not implement adequate protection 
measures, such as blocking accounts after 
several failed attempts [45]. 

& Phishing: Phishing involves sending 
fraudulent messages that appear to come from 
trusted sources to trick users into divulging 
sensitive information, such as passwords or 
bank account details. Research indicates that 
phishing attacks are extremely common and 
can be customized to target any group of users, 
making them a generic type of attack [46]. 

Generic attacks rely on automation and adaptability, 
being orchestrated through scripts and kits that 
continuously scan attack surfaces and adjust payloads 
to quickly exploit discovered vulnerabilities. 
Techniques such as spoofing, sniffing and exploiting 
unsecured services allow actors to gain initial access or 
sensitive information; Effective countermeasures 
combine network-level detection (flow-based 
monitoring), strict hardening policies, and proactive 

updates to configurations and services to reduce attack 
windows [44]. 

G. Reconnaissance Attacks 
The "Reconnaissance" attack, also known as 

"research" or "scanning", is a crucial step in the 
lifecycle of a cyberattack. It involves collecting 
information about a target to identify weaknesses that 
can be exploited later. This preliminary step is essential 
for planning and executing an effective attack [47]. 

The stages and techniques of the Reconnaissance 
Attack are as follows: 

& Passive Reconnaissance: This involves 
obtaining information about the target without 
directly interacting with the system. Methods 
include internet searches, social media 
analysis, and study of public documents. The 
goal is to avoid detection by the target's security 
systems [48]. 

& Active Reconnaissance: This involves direct 
interactions with the target system, such as port 
scanning, pinging, and traceroute. These 
activities can be detected by security systems 
but provide more detailed data on network 
structure and vulnerabilities [48]. 

Reconnaissance attacks aim to progressively obtain 
information about a target in order to build an 
exploitable profile; The typical process includes 
footprinting (collecting initial data such as domains, IP 
blocks, and WHOIS records) [49], followed by 
automated scanning to identify open ports, services, and 
software versions [50], and then enumeration, which 
extracts specific details about accounts, policies, and 
internal resources [51]. These steps, often performed 
with automated tools, allow attackers to map the attack 
surface, identify vulnerable vectors, and plan further 
actions (exploitation, targeted phishing, or lateral 
movement). 

H. Shellcode Attacks 
Shellcode is a specialized type of code used in 

cyberattacks, designed to gain access to a shell 
(command interface) on a target system. This type of 
attack is frequently used in exploits of vulnerabilities, 
especially in buffer overflow, to execute arbitrary 
commands or gain complete control over the target 
system. Shellcode is a sequence of instructions 
assembled to be executed directly by the CPU. The term 
"shellcode" comes from its original purpose of 
launching a shell (command-line interpreter) [52]. 

Types of Shellcode: 

& Local Shellcode: Used when the attacker 
already has a certain level of access to the target 
system and wants to escalate privileges or 
execute other local commands [53]. 

& Remote Shellcode: Used to compromise a 
remote system, being injected through the 
network. Typically, it connects back to the 
attacker to provide access to a shell or executes 
predefined commands [53]. 
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& Staged Shellcode: It is divided into several 
stages, so the first stage, called stager, is small 
and simple, having the role of downloading and 
executing the second stage, called stage, which 
contains the complete functionality [53]. 

Shellcode is the binary payload used to take control 
of the execution of a vulnerable program and is 
typically injected by exploiting memory vulnerabilities 
(e.g., buffer overflow), at which point the return 
pointers or jump table are manipulated to redirect the 
execution flow to the malicious code. Structurally, 
shellcode is often written in assembly language, very 
compact and self-sufficient (it does not depend on 
external libraries), a necessary condition because the 
execution environment can be unpredictable [52]; To 
avoid detection, attackers frequently apply 
encoding/obfuscation techniques and polymorphic 
variants. Defenses include Execution Controls (DEP 
(Data Execution Prevention)/NX (No-eXecute)), 
Address Randomization (ASLR (Address Space 
Layout Randomization)), Control-Flow Integrity, and 
Behavioral Detection Mechanisms that track anomalies 
in the execution flow [54], [55].  

I. Worms Attacks 
Worms are autonomous malware that self-

propagates through computer networks without 
requiring user intervention. Unlike viruses, which 
attach themselves to existing programs, worms are self-
contained entities that multiply and spread rapidly by 
exploiting network and software vulnerabilities. 
Worms are autonomous malware programs that 
propagate through networks, infecting other systems to 
multiply [56].  

TABLE I.   COMPARISON OF THE MAIN TYPES OF            
CYBER-ATTACKS ANALYZED 

They do not require a host program to spread but 
rather use networks to spread from one computer to 
another, and they can exploit security vulnerabilities in 
software or misconfigurations to copy themselves to 
other systems [56]. 

Worms can be classified as follows: 

& Email Worms: They are spread by sending 
infected emails to contacts in the victim's 
address list. Often, emails contain malicious 
attachments or links [57]. 

& Internet Worms: They spread over the 
Internet, exploiting vulnerabilities in network 
services to copy themselves to other systems 
connected to the network [56]. 

& File-sharing Worms: They propagate through 
P2P (Peer-to-Peer) networks infecting shared 
files and thus spreading to other users who 
download those files [58]. 

The prevention and detection of worm attacks is 
based on the constant updating of systems through 
security patches, the use of firewalls and network 
segmentation to limit the spread, and the identification 
of propagation is carried out through IDS/NIDS 
systems and monitoring of network traffic, which can 
signal anomalous communication patterns specific to 
these attacks [59]. 

To highlight the differences between the main types 
of attacks analyzed in this paper, Table I summarizes 
the defining characteristics, mechanisms of action, 
impact on embedded systems and the main prevention 
measures identified in the literature [16-59]. 

 

Type of attack Main mechanism Target / Vector Impact on the system Difficulty of 
detection 

Recommended 
prevention measures 

Fuzzing 
Sending 

invalid/random data to 
cause errors 

Protocols, Files, 
Firmware 

Discovering 
vulnerabilities; Crashes 

Average – detectable 
by logs and IDS 

Regular patching, input 
validation, and internal 

fuzz testing 

Analysis 
Static/dynamic/ 

forensic inspection of 
code or traffic 

Software, Binary 
Code, Network 

Vulnerability 
identification, post-attack 

analysis 

Reduced (non-
invasive, passive) 

Periodic auditing, 
behavioral monitoring 

Backdoor Introducing a hidden 
access channel 

Software, 
firmware, 
hardware 

Persistent unauthorized 
access 

High – hides from 
protection systems 

Supply chain integrity, 
secure boot, firmware 

verification 

DoS 
Overload due to 

excessive traffic or 
abnormal packages 

Servers, gateways, 
and IoT devices 

Service unavailability, 
network congestion Medium–high 

Firewall/ACL, rate 
limiting, network 

segmentation 

Exploit Exploiting a known or 
zero-day vulnerability 

Software / OS 
(Operating 

System) 

Arbitrary code execution, 
privilege escalation High 

Patch management, 
sandboxing, verify integrity 

cod 

Generic Generic techniques 
(brute force, phishing) 

User accounts, 
services 

Compromise of 
credentials, unauthorized 

access 
Low–medium 

MFA (Multi-Factor 
Authentication), Strong 

Passwords, User Education 

Reconnaissance Collecting Target 
Information 

Networks, servers, 
applications 

Exposure of topology 
and vulnerabilities 

Reduced (log-
detectable) 

IDS, Privacy Policies, 
Restriction of Public 

Information 

Shellcode 
Inserting and 

executing malicious 
code at the CPU level 

Memory, 
exploitable 
applications 

Taking control of 
execution High 

DEP/NX, ASLR, execution 
flow control, behavioral 

monitoring 

Worms 

Self-propagation 
through the network, 

without human 
intervention 

Networks, 
connected systems 

Rapid spread, 
infrastructure damage Medium 

Patches, firewall, 
IDS/NIDS, network 

segmentation 
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IV. ANOMALIES AND MALFORMATIONS IN 
CYBERATTACK PATTERNS 

Anomalies and malformations in the context of 
cybersecurity refer to deviations from the normal 
behavior of a system or network and are often used to 
identify potential cyberattacks. In cyberattack models, 
understanding and detecting these concepts is essential 
for preventing and responding effectively to threats 
[60]. 

A. Anomalies in Cyber Attack Patterns 
Anomalies are any behavior or dataset that deviates 

from expected or normal patterns. In the context of 
cybersecurity, these can include unusual user activity, 
unusual network traffic, or unexpected changes to files 
and systems [60]. 

The anomalies are classically as follows: 

& Point anomalies: These are individual data that 
deviate significantly from the rest of the 
dataset. For example, a single high-volume data 
packet in an otherwise constant data stream can 
indicate a DoS attack [61]. 

& Contextual anomalies: The data is abnormal 
in the context of a specific time frame or other 
contextual conditions. For example, a high 
volume of traffic in a business network may be 
normal during business hours, but abnormal 
during the night [62]. 

& Collective anomalies: Refers to a dataset that 
is abnormal when considered together, but 
whose individual components may appear 
normal. For example, a series of small changes 
in system files that individually seem harmless 
but together indicate a stealth attack [63]. 

Malformation detection involves the use of 
advanced analysis techniques, such as packet analysis, 
which uses specialized tools to inspect network traffic 
details and identify inconsistencies, monitoring file 
integrity by checking checksums (hashes) of critical 
files to detect unauthorized changes, and implementing 
intrusion detection systems, which can recognize 
signatures and behaviors associated with malformations 
and other malicious activities [64]. 

Anomaly detection involves the use of various 
techniques and algorithms, such as: 

: Statistical methods: It is based on defining a 
probabilistic model of normal behavior and 
identifying significant deviations [65]. 

: Machine Learning: ML algorithms such as 
clustering (K-means) and classification (SVM 
(Support Vector Machines)) are used to learn 
normal patterns of behavior and identify 
deviations [66]. 

: Rule-based methods: Manual definition of 
rules based on expert knowledge to detect 
abnormal behavior [67]. 

B. Malformations in Cyber Attack Patterns 
Malformations refer to intentional and malicious 

changes to the structure or content of data to exploit 
vulnerabilities in information systems. They can take 
many forms, including corrupted network packets, 
altered configuration files, or injected code [60]. 

Types of Malformations: 

: Malformed network packets: Attackers can 
create network packets that do not comply with 
protocol specifications to cause errors in 
network devices. For example, fragmented IP 
attacks use malformed IP packets to bypass 
firewalls [68]. 

: Injected code: Injecting malicious code into an 
application or system to take control. Examples 
include SQL injection and XSS [69]. 

: Modified configuration files: Unauthorized 
modification of system configuration files to 
allow unauthorized access or install backdoors 
[70]. 

CONCLUSION 

The present paper aimed to carry out a systematic 
analysis of the methods, mechanisms and 
classifications used in the identification and description 
of cyber-attacks on embedded systems and critical 
infrastructures. By correlating the information from the 
literature, the fundamental concepts regarding 
cybersecurity, the types of attack (fuzzing, analysis, 
backdoors, DoS, exploit, worms, reconnaissance, 
generic, shellcode, etc.) and the principles of anomaly 
detection were defined. 

Chapters III and IV presented the theoretical 
foundations and categories of attack analyzed, 
highlighting the mechanisms by which they affect the 
confidentiality, integrity and availability of the systems. 
This stage allowed the knowledge to be structured in a 
unitary way, facilitating the identification of vulnerable 
areas and the appropriate defense methods. 

The paper contributes to an in-depth understanding 
of the relationship between attack vectors and 
protection principles, providing a solid foundation for 
the development of intelligent detection and prevention 
solutions. In the next stage of the research, the author 
aims to develop his own attack detection system based 
on the analysis of anomalies and malformations, using 
artificial intelligence techniques and statistical 
processing.  

Future directions include expanding the database 
with real samples of traffic and security events, 
standardizing the testing process, as well as applying 
XAI methods to increase decision-making 
transparency. Thus, this paper not only synthesizes the 
existing literature, but also substantiates the practical 
approach of designing an autonomous system, capable 
of detecting abnormal behaviors early and reducing the 
exposure of embedded systems to complex 
cyberattacks. 
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