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Abstract -Embedded systems have become fundamental
to modern technological infrastructures, powering
applications from smart vehicles and medical devices to
critical industrial control. However, their rapid
integration into the IoT (Internet of Things) ecosystem
has significantly expanded the attack surface, exposing
them to a wide range of cybersecurity threats. This paper
provides a structured review of attack techniques
targeting embedded systems, including fuzzing,
reconnaissance, shellcode injection, denial-of-service,
and backdoor exploitation. Furthermore, it discusses the
role of AI (Artificial Intelligence) in early anomaly
detection and predictive threat modeling. By comparing
traditional and Al-enhanced security mechanisms, the
paper highlights both the advantages and limitations of
current defense strategies. The analysis emphasizes the
growing importance of adaptive, data-driven models
capable of operating under resource-constrained
embedded environments, proposing a synthesis of
theoretical and practical advances in securing embedded
architectures.
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1. INTRODUCTION

The security of embedded systems has become a
topic of major importance in today's technological
context. Embedded systems, defined as
microprocessor-controlled  devices that perform
specific functions in a larger ensemble, are ubiquitous
in our daily lives. They are found in medical devices,
vehicles, household appliances, industrial equipment
and critical infrastructures, thus influencing many
aspects of modern society [1], [2].

2" Bizon Nicu
Department of Electronics, Computers and
Electrical Engineering
National University of Science and Technology
Polyethnic Bucharest
Pitesti, Romania
nicubizon@yahoo.com

In recent years, the number of embedded devices
connected to global networks has grown exponentially
due to the rise of IoT. It is estimated that by the end of
2025 there will be more than 75 billion devices
connected to the internet, offering multiple advantages
but at the same time expanding the attack surface for
cybercriminals. This massive increase in connectivity
brings with it significant challenges in terms of the
security of these systems [3].

Embedded systems are essential for the operation of
critical infrastructures such as power grids,
transportation systems, and communications. A
cyberattack on these systems can have devastating
consequences, from service interruptions to massive
economic losses and risks to public safety. These
systems are often designed for very specific tasks and
operate in resource-constrained environments. This
specific complexity makes security difficult to
implement and maintain, requiring customized
solutions and a deep understanding of the operational
context [1], [2].

The security of embedded systems is essential for
data protection and privacy. Embedded devices collect
and manage large amounts of data, including sensitive
personal information. Ensuring the security of this data
is crucial for preventing unauthorized access and
protecting the confidentiality of information. In many
critical applications, such as medical or industrial, the
reliability of embedded systems is vital. Cybersecurity
helps ensure that these systems operate continuously
and without interruption, preventing failures that can
have serious consequences [1], [2].

Embedded systems are attractive targets for
cyberattackers who can exploit vulnerabilities to take
control, steal data, or sabotage the operation of devices.
Implementing robust security measures is crucial to
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prevent these attacks and protect the integrity of
systems. However, implementing security in embedded
systems involves several unique challenges. Resource
limitations, such as processing capacity and energy
consumption, require efficient and optimized security
solutions. Also, the rapid evolution of technologies and
cyber threats requires constant adaptability and regular
updates of protection mechanisms [4].

The use of Al in anomaly detection and forecasting
is an innovative and essential approach in the modern
context of cybersecurity and embedded systems.
Anomalies, defined as deviations from the expected
behavior of a system, can indicate the presence of
malfunctions, errors or even cyberattacks. Early and
accurate detection of these anomalies is crucial for
maintaining the integrity and reliability of critical
systems [5], [6].

One of the main motivations for adopting Al in this
field is its ability to process and analyze large volumes
of data in real-time. Embedded systems are constantly
generating operational data, and manually analyzing
this data would be extremely laborious and inefficient.
ML (Machine Learning) algorithms can identify
complex patterns and detect anomalies with much
greater accuracy and speed than traditional methods [6].

Al also provides flexibility and adaptability in the
face of an ever-changing threat landscape. ML models
can be trained to recognize new types of attacks or
anomalies based on historical data and recent
developments. It allows for continuous updating and
improvement of detection mechanisms, providing a
significant advantage in the fight against emerging
threats [6].

Another key aspect of using Al is its ability to
forecast anomalies before they fully manifest.
Predictive algorithms, such as neural networks and
regression models, can predict potential problems based
on trends and patterns observed in operating data. This
allows for proactive interventions and preventive
measures, minimizing the negative impact on the
system and reducing downtime [5].

Al is also helping to reduce false alarms, which are
a common problem in anomaly detection systems. By
continuously refining algorithms and using advanced
classification techniques, Al can more effectively
differentiate  between legitimate activities and
suspicious behaviors, thereby improving the accuracy
and relevance of the alerts generated [7].

In Figure 1, the number of papers indexed by
Scopus in the period 2021-2025 on the topic of anomaly
detection in security systems is graphically presented.

models, emphasizing their detection and interpretation
in intelligent embedded contexts. Finally, paper
outlines the main conclusions and future research
directions, summarizing key findings and identifying
open challenges in securing embedded architectures.
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In addition to a theoretical introduction, this paper
provides in Section II a comprehensive literature review
of recent research addressing cyberattack techniques
and Al-based anomaly detection in embedded systems.
Section III presents the theoretical foundations
underlying cybersecurity mechanisms and modeling
principles, while Section IV details the concepts of
anomalies and malformations within cyberattack

Figure 1. Papers published in 2021-2025 on the detection of
anomalies in security systems

II.  LITERATURE REVIEW

[8] provides an extensive synthesis of embedded
device security analysis, describing the dynamic vs.
static landscape (with a focus on QEMU (The Quick
Emulator) emulation and web interface fuzzing), the
issue of re-hosting monolithic and kernel-level
firmware, as well as the current challenges—end-to-end
automation, low dynamic analysis throughput, and
scaling to large batches of firmware—thus outlining
concrete directions for future research.

The authors [9] conduct a comprehensive survey of
anomaly detection in IoT, proposing a multi-layer
taxonomy (types/sources of anomalies, learning
frameworks), comparing computing platforms (cloud,
fog, edge, hybrid) and methodologies (information-
theory, graph-/spectral-based, blockchain, ML/DL
(Deep Learning), AE (Autoencoder), RNN (Recurrent
Neural Network)/LSTM (Long Short-Term Memory),
CNN (Convolutional Neural Network), GAN
(Generative Adversarial Network), plus evolutionary,
RL (Reinforcement Learning) and ensemble), and
systematizing datasets (NSL-KDD (Network Security
Laboratory-Knowledge Discovery Dataset), BoT-lIoT
(Botnet Internet of Things Dataset), CICIDS2017
(Canadian Institute for Cybersecurity Intrusion
Detection System 2017), UNSW-NB15 (University of
New South Wales Network-Based Dataset 2015),
Yahoo Webscope) and metrics (Precision, Detection
Rate, FPR (False Positive Rate), ROC-AUC (Receiver
Operating Characteristic-Area Under Curve), F1). The
paper highlights challenges (reducing complexity,
environmental/architectural constraints, privacy and
interpretability, lack of adequate datasets) and future
directions (XAI (Explainable Artificial Intelligence),
edge-intelligence, self/weak supervision, Transformers,
digital twin).

The paper [10] conducts an analytical review of the
security of embedded systems, identifying 12 factors
influencing CSES (Cybersecurity of Embedded
Systems) — from features, implementation and
connectivity protocols, to attack surfaces, impact and
actors — and proposes the 9-layer MuLFESC (Multi-
Layered Framework for Embedded Systems
Cybersecurity) framework for security-by-design and
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new risk metrics, providing a coherent roadmap for
assessing and strengthening defense at the hardware—
software—network level.

In the paper [11] a systematic literature mapping on
AloT/TinyML for the detection of anomalies on the
MCU (Microcontroller Unit) is proposed, synthesizing
18 studies (2021-2023) and providing a taxonomy of
algorithms (CNN, Autoencoder, LSTM, GMM
(Gaussian Mixture Model), IF (Isolation Forest), TEDA
(Typicality and Eccentricity Data Analysis), HyBNN
(Hybrid Bayesian Neural Network), LSH (Locality-
Sensitive Hashing)), methods/metrics (Accuracy, Fl1,
AUC, RMSE (Root Mean Square Error)), platforms
(Raspberry Pi, STM32, ESP32, Arduino, Jetson) and
architectures (edge/fog/cloud), with benefits (low
latency, increased privacy) and notable gaps (lack of
dataset standardization, modest power reporting,
absence of LoRaWAN (Long Range Wide Area
Network)/5G connections, few real-time deployments).

Paper [12] conducts a comprehensive review of
CPS (Cyber-Physical Systems) security in the context
of 5G and Beyond 5G technologies, analyzing the
architecture, threats, and security solutions associated
with authentication, access, and encryption. The paper
describes a complete taxonomy of attacks (DoS (Denial
of Service), spoofing, data tampering, replay,
injection), includes CPS threat models based on ISO
(International Organization for Standardization)/IEC
(International Electrotechnical Commission)
27001:2013 and presents a synthesis of the most
important industrial incidents (Stuxnet, Ukraine Attack,
Jeep Hack). The authors propose a multi-dimensional
analysis  framework:  cyber-attack  emanation,
prototyping, detection and architecture design and
correlate these aspects with emerging technologies (Al,
blockchain, PUF (Physically Unclonable Function),
ML/DL) for securing 5G/6G-enabled CPS applications,
outlining future research directions related to physical-
layer security, adaptive Al defenses and low-latency
protection mechanisms.

A comprehensive survey of deep learning models
for anomaly detection is presented in [13], covering
architectures  (CNN/RNN/LSTM,  Autoencoders,
GAN), standard datasets, and evaluation metrics,
describing IDS  (Intrusion Detection  System)
taxonomies (HIDS (Host-based Intrusion Detection
System)/NIDS (Network-based Intrusion Detection
System)), adversarial attacks, an end-to-end detection
pipeline, and current challenges (generalization, class
imbalance, interpretability), with future directions
towards hybrid models, hardware acceleration, and
XAL

III. THEORETICAL FOUNDATIONS

In this section, the main attack techniques used in
embedded systems are presented. These attacks, which
include Fuzzers, Analysis, Backdoors, DoS, Exploits,
Generic, Reconnaissance, Shellcode, and Worms.
Understanding these techniques is essential to ensuring
the security and integrity of computer systems. Each of
these techniques represent specific methods by which
attackers can compromise systems, either by exploiting

software vulnerabilities or by infiltrating and
manipulating them for malicious purposes. The analysis
of these techniques allows the development of more
effective defense strategies and the implementation of
appropriate preventive measures in the face of cyber
threats.

A. Fuzzers Attacks

A "Fuzzing" attack is a method used in
cybersecurity to test and discover vulnerabilities in
software. This process involves sending randomly
generated or deliberately invalid data to applications,
protocols, or systems to cause errors or unexpected
behaviors that may reveal exploitable bugs [14], [15],
[16].

Fuzzing attacks (types) can be classified as follows:

Mutational Fuzzing: It modifies existing data
in a random way to create new and unexpected
inputs. For example, it can modify data
packages or input files to test the robustness of
the application [17].

[ Generative Fuzzing: Builds entirely new
inputs based on protocol or data format
specifications. Especially useful for testing
applications with structured inputs, such as
network protocols or file formats [18].

L Protocols Fuzzing: Focuses on sending invalid
or altered data packets to applications that use
network protocols. An example is sending
modified TCP/IP (Transmission Control
Protocol/Internet Protocol) packets to test
network stacks [19].

L Fuzzing file formats: Create and open
corrupted files to test the parsers and decoders
of the applications that process these files. For
example, a fuzzer can generate malformed
JPEG image files to test the applications that
open them [20].

Fuzzing provides a simple and effective test design,
requiring no detailed knowledge of the internal
behavior of the tested system, which makes it
recommended for "black box" testing. The method is
particularly useful for identifying unexpected errors and
exploitable bugs that can escape manual testing, helping
to quickly discover vulnerabilities in firmware and
protocol stacks. In contexts where the system is closed
or incubated in a heterogeneous environment, fuzzing
remains one of the most practical automated techniques
for exploring the attack surface [14], [15], [16].

Despite its usefulness, fuzzing tends to identify
mainly simple errors and does not always assess the full
impact of discovered vulnerabilities; Many detected
cases require further analysis to determine actual
exploitability. Also, to achieve adequate coverage of
the input space, fuzzing can require significant
computational resources and time, while generating a
high volume of false alarms that require manual triage
and prioritization effort [14], [15], [16].

Among the most popular fuzzing tools are SPIKE
and Wireshark, which are used to test network protocols
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and applications. SPIKE, for example, is a fuzzer
creation kit based on the C programming language,
which allows the generation of "fuzzed" messages to
induce errors in network services [21], [22], [23].

B. Analysis Attacks

The "Analysis" attack, in the context of
cybersecurity, refers to different methods and
techniques used to analyze computer systems to
identify  vulnerabilities, abnormal behavior and
potential attacks. This category encompasses various
methods, from analyzing source code to monitoring
network traffic and evaluating executable behavior
[24], [25].

The types of Analysis in cybersecurity are as
follows:

Static analysis is the process of examining
source code or binaries without executing
them, to identify vulnerabilities, logical errors,
or deviations from security standards. This
method is based on the inspection of syntax,
data structures and control flows, and is used in
the early stages of development to prevent
exploitation in production environments.
Through automated static analysis tools,
critical vulnerabilities such as buffer overflow,
SQL (Structured Query Language) injection or
XSS (Cross-Site Scripting) can be detected,
making it essential in the security-by-design
process and in the evaluation of the code before
the final integration of the system [26].

L Dynamic analysis consists of examining the
behavior of a program during its execution,
tracking how it uses system resources and
interacts with other hardware or software
components. Unlike static analysis, this method
allows you to identify vulnerabilities and bugs
that only manifest themselves during runtime,
such as runtime issues, heap spray, or malicious
behavior hidden in executables. By monitoring
performance, memory consumption, and
execution flow, dynamic analytics provides a
practical insight into application stability and
security and is essential for validating
protection  mechanisms in  real-world
environments [27].

L Behavioral analysis is based on observing and
interpreting the actions of users, processes, and
components of a system, with the aim of
identifying unusual or suspicious activity that
may indicate a compromise. This method is
essential for detecting attacks that cannot be
recognized by static signatures, such as zero-
day attacks or subtle behavioral exploits. By
monitoring access logs, analyzing network
traffic, and applying machine learning
algorithms to recognize deviant patterns,
behavioral analytics provides an additional
layer of proactive protection, enabling early
identification of emerging threats and
continuous adaptation of security policies [28].

L Forensic analysis involves the systematic
collection, preservation and examination of

digital evidence after a security incident, with
the aim of reconstructing the sequence of
events, identifying attack vectors and
determining the extent of the compromise. This
includes techniques such as examining volatile
memory, analyzing files on disks, investigating
network artifacts, and interpreting system logs
to reconstruct the attacker's steps and the
mechanisms used. The main advantage lies in
the ability to provide actionable evidence for
remediation and improvement of defensive
strategies  identifying  weaknesses  and
persistence mechanisms as well as supporting
legal procedures where appropriate. Practical
examples include extracting memory images
for rootkit detection, analyzing system
timelines to correlate events, and investigating
captured packets to track data exfiltration
channels [29].

C. Backdoors Attacks

"Backdoors" attacks are methods by which an
attacker creates or uses a hidden way of accessing a
computer system, bypassing standard authentication
and security mechanisms. These attacks are particularly
dangerous because they allow continuous unauthorized
access that is difficult to detect and remove [30].

The associated definitions and types of Backdoors
are presented as follows:

Classic backdoors are deliberate mechanisms
or compromise results that provide hidden
access to a system, being integrated either at the
software level (source code, modules,
components from installation packages) or at
the hardware level (microcode, IP (Internet
Protocol) compromised blocks). They can be
intentionally  introduced by  malicious
developers or later inserted by exploiting
vulnerabilities or in the supply chain, ensuring
persistence and a discreet path for attackers.
Typical examples include commands hidden in
the code, unauthorized user accounts, modified
binary components, or malicious code
distributed through a legitimate update, all of
which have the potential effect of remote
control and data exfiltration without immediate
detection [31].

B

Rootkits are a specialized class of backdoors
designed to hide the attacker's presence in the
system, often intervening at the kernel or user-
mode level to mask processes, files, network
connections, and log entries that could signal
compromise. Common techniques include
hooks in system calls, DKOM (Direct Kernel
Object Manipulation), binary image changes,
or kernel module replacements, all to ensure
persistence and privilege theft. Rootkits are
widely used to maintain privileged access on
compromised systems and pose a major
challenge to detection, as they can undermine
traditional monitoring and antivirus tools, often
requiring advanced forensics and hardware-
level integrity techniques to identify and
eradicate [32].
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Hardware backdoors are unauthorized access
mechanisms or functionality integrated directly
into the physical layer of the device—from IP
blocks or microcode to FPGAs (Field-
Programmable Gate Arrays), bitstreams, and
custom circuits—that allow attackers to bypass
security software controls altogether and gain
access, persistence, or exfiltration capabilities.
These backdoors can occur through deliberate
insertions into the supply chain (compromising
third-party Ips (Internet Protocols) or the
manufacturing process), microcode changes, or
unprotected hardware configurations (e.g.,
accessible JTAG (Joint Test Action Group)
debug ports) and are particularly dangerous
because they affect the physical integrity of the
platform and are extremely difficult to detect
and remove. Their detection requires advanced
techniques (hardware fingerprinting, side-
channel analysis, silicon-level verifications and
hardware attestation mechanisms such as PUF
(Physically Unclonable Function)/secure boot),
and preventive measures are based on robust
supply-chain security processes, production
integrity checks and security-by-design design
[33].

D. DoS Attacks

The "DoS" attack is a method of cyberattack that
aims to disrupt or disrupt the services provided by a
network, server or other IT infrastructure, making them
inaccessible to legitimate users. These attacks are
carried out by flooding the target with a large volume
of traffic or by exploiting specific vulnerabilities,
leading to the exhaustion of the target system's
resources. A DoS attack aims to make an IT service
unavailable to its legitimate users by excessively
consuming the resources of the target system, either
through massive traffic (flooding) or by exploiting
software vulnerabilities.

Types of DoS Attacks:

Flood Attacks: Flood attacks consist of
generating a massive volume of traffic to a
target resource (server, gateway, loT device) to
overload its processing and service capacities,
which leads to the degradation or unavailability
of legitimate services. Representative examples
are ICMP (Internet Control Message Protocol)
Flood, in which ICMP packets are sent
massively to flood the target interface, and
SYN (Synchronize) Flood, which exploits the
TCP  (Transmission  Control  Protocol)
connection establishment mechanism by
sending many SYN packets without
completing the handshake, thus consuming the
server's state resources. In embedded and IoT
environments, the effect of a flood can be
amplified by hardware limitations (low buffer,
weak CPU (Central Processing Unit)) and
network topology (low-capacity
hubs/gateways), which can trigger functional
bottlenecks or severe telemetry losses.
Defenses include packet filtering at the edge of

the network, rate-limiting, SYN cookies,
firewal/ACL (Access Control  List)
configurations, as well as "scrubbing" solutions
at an edge/cloud layer; However, the
application of these countermeasures on
devices with low resources requires distributed
and selective solutions to avoid the increase of
false positives or the impact on legitimate
functionality [34].

L Application-Layer DoS: Exploiting
application-specific vulnerabilities to consume
server resources. Examples include HTTP
(Hypertext Transfer Protocol) GET/POST
flood attacks [35].

[ DDoS (Distributed Denial of Service): DoS
attacks launched from multiple distributed
sources, making them even harder to counter.
These attacks are usually orchestrated through
botnet networks [36].

E. Exploits Attacks

An "Exploit" attack involves the wuse of
vulnerabilities in software or hardware to compromise
a computer system. These attacks are designed to
exploit weaknesses in a system's security to gain
unauthorized access, execute malicious code, or disrupt
the normal operation of a device or application an
exploit is a sequence of instructions, data, or actions that
take advantage of a vulnerability in a computer system
to achieve unforeseen or unauthorized behavior [37].

A classification of exploits can be listed:

Remote Exploits: Attacks that are launched
remotely without physical access to the target
system. These include exploiting
vulnerabilities in network services or web
applications [38].

L Local Exploits: Attacks that require physical
access or authenticated access to the target
system. Typically, they exploit vulnerabilities
to escalate user privileges [39].

L Zero-Day Exploits: Attacks that exploit
vulnerabilities unknown to the public or
software developers at the time of the attack.
These vulnerabilities do not yet have a patch
available, which makes them particularly
dangerous [40].

The exploitation process begins with the discovery
of vulnerabilities, which can be achieved through
security audits, penetration testing, static/dynamic
analysis of the code or by behavioral monitoring of the
system to identify anomalies that indicate a potential
weakness. Once a vulnerability is identified, the
attacker moves on to exploit development —
specialized code that leverages that weakness to
escalate privileges, bypass control mechanisms, or
launch arbitrary execution. This is followed by the
launch of the attack, which can occur either through
network vectors (malicious packets, HTTP requests,
protocol payloads) or through local access
(compromised installation environments, physical
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devices). Finally, obtaining the results may involve
unauthorized access to resources, execution of
malicious code, data exfiltration or disruption of the
functionality of the system, the concrete effects
depending on the nature of the vulnerability and the
level of access obtained [37].

Specific exploitation techniques frequently include
classic attacks such as buffer overflow, where data
written beyond the boundaries of a buffer allows the
return area to be overwritten and can lead to arbitrary
code execution [41]; SQL injection, whereby malicious
SQL commands are injected into queries to databases
to obtain or modify unauthorized information [42]; and
XSS, which introduces malicious JavaScript code into
web pages so that it is executed in the context of
legitimate users' browsers, making it easier to steal
sessions or manipulate interfaces [43]. Each of these
techniques requires specific stages of preparing and
adapting the exploit to the target environment and is
usually followed by additional steps to maintain
persistence and trace coverage (post-exploitation).

F. Generic Attacks

In cybersecurity, the term "Generic" attack is used
to describe a class of attacks that are not specific to a
particular vulnerability but can be applied in a variety
of scenarios to compromise computer systems. These
attacks rely on common methods and techniques to
exploit weaknesses in systems. A generic attack is a
type of cyberattack that does not target a specific
vulnerability but uses common techniques and methods
to compromise the security of computer systems. These
attacks are often automatic and can be tailored to work
against a variety of targets [44].

Generic Attacks are defined by the following types:

Brute Force Attacks: These attacks involve
trying all possible password combinations until
you find the correct one. It is a classic example
of a generic attack because it is not based on a
specific vulnerability in the system, but on the
weakness of user passwords. Studies show that
brute force attacks are effective against systems
that do not implement adequate protection
measures, such as blocking accounts after
several failed attempts [45].

L Phishing:  Phishing involves  sending
fraudulent messages that appear to come from
trusted sources to trick users into divulging
sensitive information, such as passwords or
bank account details. Research indicates that
phishing attacks are extremely common and
can be customized to target any group of users,
making them a generic type of attack [46].

Generic attacks rely on automation and adaptability,
being orchestrated through scripts and kits that
continuously scan attack surfaces and adjust payloads
to quickly exploit discovered vulnerabilities.
Techniques such as spoofing, sniffing and exploiting
unsecured services allow actors to gain initial access or
sensitive information; Effective countermeasures
combine  network-level  detection  (flow-based
monitoring), strict hardening policies, and proactive

updates to configurations and services to reduce attack
windows [44].

G. Reconnaissance Attacks

The "Reconnaissance" attack, also known as
"research" or "scanning", is a crucial step in the
lifecycle of a cyberattack. It involves collecting
information about a target to identify weaknesses that
can be exploited later. This preliminary step is essential
for planning and executing an effective attack [47].

The stages and techniques of the Reconnaissance
Attack are as follows:

Passive Reconnaissance: This involves
obtaining information about the target without
directly interacting with the system. Methods
include internet searches, social media
analysis, and study of public documents. The
goal is to avoid detection by the target's security
systems [48].

L Active Reconnaissance: This involves direct
interactions with the target system, such as port
scanning, pinging, and traceroute. These
activities can be detected by security systems
but provide more detailed data on network
structure and vulnerabilities [48].

Reconnaissance attacks aim to progressively obtain
information about a target in order to build an
exploitable profile; The typical process includes
footprinting (collecting initial data such as domains, IP
blocks, and WHOIS records) [49], followed by
automated scanning to identify open ports, services, and
software versions [50], and then enumeration, which
extracts specific details about accounts, policies, and
internal resources [51]. These steps, often performed
with automated tools, allow attackers to map the attack
surface, identify vulnerable vectors, and plan further
actions (exploitation, targeted phishing, or lateral
movement).

H. Shellcode Attacks

Shellcode is a specialized type of code used in
cyberattacks, designed to gain access to a shell
(command interface) on a target system. This type of
attack is frequently used in exploits of vulnerabilities,
especially in buffer overflow, to execute arbitrary
commands or gain complete control over the target
system. Shellcode is a sequence of instructions
assembled to be executed directly by the CPU. The term
"shellcode" comes from its original purpose of
launching a shell (command-line interpreter) [52].

Types of Shellcode:

L Local Shellcode: Used when the attacker
already has a certain level of access to the target
system and wants to escalate privileges or
execute other local commands [53].

1) Remote Shellcode: Used to compromise a
remote system, being injected through the
network. Typically, it connects back to the
attacker to provide access to a shell or executes
predefined commands [53].
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Staged Shellcode: It is divided into several
stages, so the first stage, called stager, is small
and simple, having the role of downloading and
executing the second stage, called stage, which
contains the complete functionality [53].

Shellcode is the binary payload used to take control
of the execution of a vulnerable program and is
typically injected by exploiting memory vulnerabilities
(e.g., buffer overflow), at which point the return
pointers or jump table are manipulated to redirect the
execution flow to the malicious code. Structurally,
shellcode is often written in assembly language, very
compact and self-sufficient (it does not depend on
external libraries), a necessary condition because the
execution environment can be unpredictable [52]; To
avoid  detection, attackers  frequently apply
encoding/obfuscation techniques and polymorphic
variants. Defenses include Execution Controls (DEP
(Data Execution Prevention)/NX (No-eXecute)),
Address Randomization (ASLR (Address Space
Layout Randomization)), Control-Flow Integrity, and
Behavioral Detection Mechanisms that track anomalies
in the execution flow [54], [55].

1. Worms Attacks

Worms are autonomous malware that self-
propagates through computer networks without
requiring user intervention. Unlike viruses, which
attach themselves to existing programs, worms are self-
contained entities that multiply and spread rapidly by
exploiting network and software vulnerabilities.
Worms are autonomous malware programs that
propagate through networks, infecting other systems to
multiply [56].

TABLE L.

COMPARISON OF THE MAIN TYPES OF
CYBER-ATTACKS ANALYZED

Sending
invalid/random data to
cause errors

Protocols, Files,
Firmware

vulnerabilities; Crashes

They do not require a host program to spread but
rather use networks to spread from one computer to
another, and they can exploit security vulnerabilities in
software or misconfigurations to copy themselves to
other systems [56].

Worms can be classified as follows:

Email Worms: They are spread by sending
infected emails to contacts in the victim's
address list. Often, emails contain malicious
attachments or links [57].

B

Internet Worms: They spread over the
Internet, exploiting vulnerabilities in network
services to copy themselves to other systems
connected to the network [56].

File-sharing Worms: They propagate through
P2P (Peer-to-Peer) networks infecting shared
files and thus spreading to other users who
download those files [58].

The prevention and detection of worm attacks is
based on the constant updating of systems through
security patches, the use of firewalls and network
segmentation to limit the spread, and the identification
of propagation is carried out through IDS/NIDS
systems and monitoring of network traffic, which can
signal anomalous communication patterns specific to
these attacks [59].

To highlight the differences between the main types
of attacks analyzed in this paper, Table I summarizes
the defining characteristics, mechanisms of action,
impact on embedded systems and the main prevention
measures identified in the literature [16-59].

Regular patching, input
validation, and internal
fuzz testing

Discovering Average — detectable

by logs and IDS

Staflc(dynam‘lc/ Software, Binary |. AVuh.lerablhty Reduced (non- Periodic auditing,
forensic inspection of identification, post-attack| . . . . .S
Code, Network . invasive, passive) behavioral monitoring
code or traffic analysis
. . Software, . . . . Supply chain integrity,
Introducing a hidden Persistent unauthorized | High — hides from
firmware, . secure boot, firmware
access channel access protection systems . .
hardware verification

Overload due to
excessive traffic or
abnormal packages

Servers, gateways,
and ToT devices

Service unavailability,
network congestion

Medium-high

Firewall/ACL, rate
limiting, network
segmentation

. Software / OS . . Patch management,
Exploiting a known or . Arbitrary code execution, . . e . .
e (Operating . . High sandboxing, verify integrity
zero-day vulnerability privilege escalation
System) cod

Generic techniques
(brute force, phishing)

User accounts,
services

Compromise of
credentials, unauthorized
access

Low—medium

MFA (Multi-Factor
Authentication), Strong
Passwords, User Education

IDS, Privacy Policies,

without human
intervention

connected systems

infrastructure damage

Collecting Target Networlfs, servers, Exposure of to_pf)l_ogy Reduced (log- Restriction of Public
Information applications and vulnerabilities detectable) .
Information
Inserting and Memory, . DEP/NX, ASLR, execution
. .. . Taking control of . .
executing malicious exploitable cecution High flow control, behavioral
code at the CPU level applications executio monitoring
Self-propagation
. Patches, firewall,
through the network, Networks, Rapid spread, Medium IDS/NIDS, network

segmentation
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IV. ANOMALIES AND MALFORMATIONS IN
CYBERATTACK PATTERNS

Anomalies and malformations in the context of
cybersecurity refer to deviations from the normal
behavior of a system or network and are often used to
identify potential cyberattacks. In cyberattack models,
understanding and detecting these concepts is essential
for preventing and responding effectively to threats
[60].

A. Anomalies in Cyber Attack Patterns

Anomalies are any behavior or dataset that deviates
from expected or normal patterns. In the context of
cybersecurity, these can include unusual user activity,
unusual network traffic, or unexpected changes to files
and systems [60].

The anomalies are classically as follows:

Point anomalies: These are individual data that
deviate significantly from the rest of the
dataset. For example, a single high-volume data
packet in an otherwise constant data stream can
indicate a DoS attack [61].

L Contextual anomalies: The data is abnormal
in the context of a specific time frame or other
contextual conditions. For example, a high
volume of traffic in a business network may be
normal during business hours, but abnormal
during the night [62].

L Collective anomalies: Refers to a dataset that
is abnormal when considered together, but
whose individual components may appear
normal. For example, a series of small changes
in system files that individually seem harmless
but together indicate a stealth attack [63].

Malformation detection involves the use of
advanced analysis techniques, such as packet analysis,
which uses specialized tools to inspect network traffic
details and identify inconsistencies, monitoring file
integrity by checking checksums (hashes) of critical
files to detect unauthorized changes, and implementing
intrusion detection systems, which can recognize
signatures and behaviors associated with malformations
and other malicious activities [64].

Anomaly detection involves the use of various
techniques and algorithms, such as:

E Statistical methods: It is based on defining a
probabilistic model of normal behavior and
identifying significant deviations [65].

(8]

Machine Learning: ML algorithms such as
clustering (K-means) and classification (SVM
(Support Vector Machines)) are used to learn
normal patterns of behavior and identify
deviations [66].

(8]

Rule-based methods: Manual definition of
rules based on expert knowledge to detect
abnormal behavior [67].

B. Malformations in Cyber Attack Patterns

Malformations refer to intentional and malicious
changes to the structure or content of data to exploit
vulnerabilities in information systems. They can take
many forms, including corrupted network packets,
altered configuration files, or injected code [60].

Types of Malformations:

E  Malformed network packets: Attackers can
create network packets that do not comply with
protocol specifications to cause errors in
network devices. For example, fragmented IP
attacks use malformed IP packets to bypass
firewalls [68].

(8]

Injected code: Injecting malicious code into an
application or system to take control. Examples
include SQL injection and XSS [69].

Modified configuration files: Unauthorized
modification of system configuration files to
allow unauthorized access or install backdoors
[70].

CONCLUSION

The present paper aimed to carry out a systematic
analysis of the methods, mechanisms and
classifications used in the identification and description
of cyber-attacks on embedded systems and critical
infrastructures. By correlating the information from the
literature, the fundamental concepts regarding
cybersecurity, the types of attack (fuzzing, analysis,
backdoors, DoS, exploit, worms, reconnaissance,
generic, shellcode, etc.) and the principles of anomaly
detection were defined.

(8]

Chapters III and IV presented the theoretical
foundations and categories of attack analyzed,
highlighting the mechanisms by which they affect the
confidentiality, integrity and availability of the systems.
This stage allowed the knowledge to be structured in a
unitary way, facilitating the identification of vulnerable
areas and the appropriate defense methods.

The paper contributes to an in-depth understanding
of the relationship between attack vectors and
protection principles, providing a solid foundation for
the development of intelligent detection and prevention
solutions. In the next stage of the research, the author
aims to develop his own attack detection system based
on the analysis of anomalies and malformations, using
artificial intelligence techniques and statistical
processing.

Future directions include expanding the database
with real samples of traffic and security events,
standardizing the testing process, as well as applying
XAI methods to increase decision-making
transparency. Thus, this paper not only synthesizes the
existing literature, but also substantiates the practical
approach of designing an autonomous system, capable
of detecting abnormal behaviors early and reducing the
exposure of embedded systems to complex
cyberattacks.
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