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Abstract – This paper is a review of the main 
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I. INTRODUCTION 

 
Embedded systems are “information processing 

systems embedded into enclosing products” [1], [2]. 

Nowadays embedded systems represent around 
90% of all commercial and research computing 
devices [3]. 

Field-Programmable Gate Arrays (FPGA) have 
become one of the first choices of computation in 
most of today embedded systems because these chips 
are right in the middle of fast time to market, 
flexibility, field programmability, performance, cost 
efficiency, real-time guarantees and simple design 
cycle which are typical specifications of most of 
embedded systems [4]. These systems are more and 
more accepted and used because a single chip 
combines communication interfaces, digital 
components, processors and digital logic design [5]. 

Some of the main advantages that FPGAs come 
with are [5]: 

 Reconfigurability – designs can be 
reconfigured and modified whenever the 
developer wishes; 

 High speed – implementations use fast 
clock rates; 

 Parallelism – parallelism computation 
involves simultaneously execution tasks 
without computation loading. Developer 
can instantiate on the same FGPA chip 

multiple modules or hardware 
implementations; 

 Reliability – no operating system to 
change design uptime; 

 IP (Intellectual Property) protection – 
hard to apply reverse engineering 
methods on the hardware 
implementation. 

According to [2], [6] and [7] a concept named 
“cyber-physical system” (CPS) has been introduced 
in 2006 and shows the strong synergy between 
embedded systems and the physical environment. 

 This concept represents systems that incorporate 
computational algorithms, physical components and 
networking. Figure 1 shows a concept of CPSs. 
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Figure 1. Concept of Cyber-Physical Systems – adapted from 
[8]. 

As we can see in the figure above this concept 
joins three essential parts [9]: 

 The first part is a definition of these 
systems; 
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 The second part refers to methods and 
tools imperative to implementation; 

 The third part exemplifies main areas 
CPSs find their applicability. 

These systems focus on computational and 
physical processes integration and represent the next 
generation of embedded systems, while the old 
generation concentrates more on computing 
processes [9]. 

National Science Foundation believes that this 
new technology can and will change the way people 
interfere with engineered systems in the same way 
that Internet did between people and information 
[10].   

Therefore, embedded systems are part of our lives 
because we find them in current critical areas that 
require high protection and security.   

Thus, the structure of this study is the following: 
the first section is an introduction in FPGA-based 
embedded systems, the second one presents how an 
embedded system is designed and the main features 
that these systems should achieve, the third part is 
about attackers and attacks against embedded 
systems, the fourth part shows the main principles, 
architectures and challenges used to secure these 
systems, the fifth part reveals future research work 
and the last section concludes the paper. 

II. EMBEDDED SYSTEMS - DESIGN AND FEATURES 

 
In general, the process for designing embedded 

systems involves four steps [11]: 

 Creating the architecture; 

 Implementing the architecture; 

 Testing the system; 

 Maintaining the system. 

Figure 2 shows the steps above but in detail: 
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Figure 2. Designing process of embedded systems – adapted 
from [11]. 

This kind of architecture is only a structure 
formed with interacting elements with certain 
properties and it not shows implementing details such 
as hardware circuit design or source code, but which 
can solve some challenges or barriers in developing 
the system, such as [11]: 

 Determining the integrity of the system; 

 Cost limitations; 

 Defining the concept of the system; 

 Determining available and necessary 
resources; 

 Salability; 

 Marketability. 

An embedded system or a cyber-physical system 
based on FPGA technology usually use a system 
design flow as described in Figure 3 [2]. 
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Figure 3. System design flow of FPGA-based ESs and CPSs – 
adapted from [2]. 

The System Specification step refers to general 
tasks and requirements the system must perform. The 
second step is divided in two parallel steps: 
Modelling that fragments step one in smaller 
punctual modules   and Constraint Identification that 
provides a suite of constraints depending on the 
environment, performance goals, security demands or 
operational development setting. In the third step, 
Architecture Selection, the developer selects the most 
appropriate hardware baseboard that can support 
future requirements. Mapping and Partitioning refers 
to achieve optimum performance where the designer 
divides assignments among available processing 
units at step four, while step five, Parameter 
Selection, looks for high performance and efficiency 
by adapting system execution parameters. Step six, 
Scheduling, is for finding best solutions with 
returning to previous steps in opposite cases.  Final 
synthesis, also the final step, reviews solutions in step 
six and if requirements and constraints are 
accomplished, the design will start with final 
synthesis of the low-level implementations 
(hardware/ software). 

According to hardware and software specs, 
system design flow and specific requirements, main 
features of these embedded systems are [1]: 

 An embedded system must be efficient 
(power consumption, run-time 
efficiency, design cost, code size, 
weight); 
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 An embedded system must be reliable: 

o Available – the probability that 
a system is available; 

o Maintainable – the probability 
that a broken system can be 
fixed in precise time; 

o Safe – the property that a 
broken system will not cause 
any injuries; 

o Secure – the property that 
sensitive confidential data 
remains confidential and 
original communication is 
guaranteed. 

 These systems are related with the 
physical environment through sensors 
and actuators.  Therefore, data is 
collected and specific environment is 
controlled; 

 These systems are committed to a 
certain application; 

 Many of them are hybrid systems 
including analog and digital modules; 

 Embedded systems must meet real-time 
constraints; 

 These systems dispose of dedicated 
user-interface. 

After we have seen how embedded systems are 
designed and their features, we must find out how 
these systems are attacked, who are the attackers and 
how attacks against embedded systems are classified.  

III. ATTACKERS AND ATTACKS AGAINST 

EMBEDDED SYSTEMS 

 
Modern FPGA-based embedded systems control 

and process more and more sensitive data and 
information. Therefore, less or more equipped 
hackers are determined and motivated to steal 
Intellectual Property of these systems through more 
and more sophisticated attacks. How important to 
protect systems is given by how sensitive is 
information stored in a device inclined to attacks 
[12]. 

In the last decades attacks experienced high 
complexity making it very difficult for developers to 
build defense mechanisms. This is not thanks to high 
scientific knowledges of the attackers, but due to the 
easiness to find tools in the on-line world and free 
market [12], [13]. Figure 4 shows the dependencies 
between attacker`s knowledges and complexity level 
of attacks in the last decades. 

Usually, an attack follows an action diagram as 
described in Figure 5. This diagram is also suitable 
for another area of systems and devices that can be 
attacked (such as breaking computer networks or 
intelligent transport systems), but in this case, is 
adapted for breaking FPGA-based embedded systems 
[14].  

 

 

Figure 4. Dependencies between attacker`s knowledges and 
complexity level of attacks in the last decades – adapted from [12], 

[13], [29]. 
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Figure 5. Diagram of an attack – adapted from [14]. 

Attacks variate but those which succeed run 
through [12]: 

 Studying and exploring for 
vulnerabilities or any information that 
can be used to attack; 

 Breaking all defense mechanisms and 
tools; 

 Modifying critical security parameters; 

 Disperse to other systems or much 
sensitive parts of the device/ system; 

 Finding and assimilate sensitive data or 
interest information and/ or freezing 
the system. 
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In the moment that a developer has identified the 

benefits and possible attacks against his system he 

also must find potential attackers that can try to 

break it according to what they are looking for. 

Thus, those that can attempt to penetrate embedded 

systems are divided in four categories [15]: 

 

 Remote or distant attackers – they don`t 
have physical access to the device but 
they can have access to a similar device 
in order to develop the attack. This 
category relies on exploring software 
vulnerabilities and user errors. Rising 
software complexity of embedded 
systems goes to more bugs that this type 
of attacker can exploit; 

 Security experts – this category aims for 
finding and developing attacks that can 
be used for various systems. 
Technically speaking, most capable to 
attacks are security experts/ specialists 
and criminal organizations; 

 Trusted developers – this type of 
attackers refers to the employees of 
companies that deliberately have stolen 
secret information for specific purposes. 
A simple way to justify this category of 
attacks is that it is easier to bribe 
someone with access to secret 
information than to apply reverse 
engineering to a piece of silicon; 

 Device or system owners – this category 
has the objective to break own systems 
and to see how security mechanisms 
and tools handle with attacks and how 
they resist against attacks. Usually, this 
type of attackers is highly motivated but 
pretty low in technical and scientific 
knowledges, thereby, they appeal to on-
line environment where they find a lot 
of tools to develop desired types of 
attacks. The risk is that they don`t know 
what backdoors or viruses these tools 
can come with. 

Attackers described above use three methods to 
attack [15]: 

 Method one – hack attack – the attacker 
is capable only of software attacks 
(malware, viruses); 

 Method two – shack attack – refers to 
low budget attacks using free market 
tools where, although physical access to 
the device exists, the equipment they 
use cannot perform complex attacks; 

 Method three – lab attack – in this case 
the attackers have access to laboratory 
equipment and for instance they can 
apply reverse engineering to a device at 
the level of transistor details or analyze 
cryptographic keys. 

 

As we know who are the attackers and how they 

attack classing attacks follows, depending on three 

main considerations. According to [16], a new 

classification of embedded systems attacks is 

created: 

 Programmability level: 

o Hardware attacks (reverse engineering, 

hardware Trojan, data monitoring, traffic 

monitoring, DoS, EME, SPA, DPA); 

o Software attacks (viruses, software Trojan, 

packet reply, buffer overload); 

o Firmware attacks (OS kernel). 

 Integration level: 

o Intellectual Property level attacks 

(modifying source code); 

o Chip level attacks (cloning, bitstream 

reverse engineering, fault attacks); 

o Board level attacks: 

 Invasive attacks (requires physical 

access to the board and chemical/ 

mechanical/ imaging processing 

techniques are used); 

 Semi-invasive attacks (works only 

for single or doubled layered board 

simply through scanning top and/ 

or bottom of the board and using 

CAD – computer-aided design); 

 Non-invasive attacks: 

- Passive attacks (observing 

and monitoring data); 

- Active attacks (modifying 

clock signal and supply 

voltage). 

 Life cycle phase: 

o Design phase attacks (cloning, adding 

undesired components); 

o Fabrication phase attacks (copies); 

o After-production attacks (design cloning, 

extracting confidential information). 

The most important challenges in defending 

against attacks are [12]: 

 

 Speed of the attack; 

 Complexity of an attack; 

 The simplicity of used tools. 

Table 1 shows most common attacks to break 

embedded systems and mobile devices depending on 

several features, while Table 2 represents a map of 

these attacks related to domains and areas where 

systems can be found.  
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Attack`s 

number 

Attack Criterion 

Attack 1 Static code analysis 

Developer attacks 

Attack 2 White-box method for 

finding data computation 

bugs 

Attack 3 White box structural 

testing 

Attack 4 Finding hardware-system 

unhandled uses in software 

Control system 

attacks 

Attack 5 Errors on HW to SW and 

SW to HW signal interface 

Attack 6 Long duration control 

attack 

Attack 7 Breaking control laws and 

software logic 

Attack 8 Forcing unusual bug cases 

Attack 9 Braking software with 

hardware 

Hardware software 

attacks 

Attack 10 Finding bugs in HW-SW 

communications 

Attack 11 Breaking software error 

recovery 

Attack 12 Testing integration and 

interface 

Attack 13 Finding errors in software-

system fault tolerance 

Attack 14 Breaking digital software 

communications  

Mobile and 

embedded software 

attacks 

Attack 15 Finding data errors and 

bugs 

Attack 16 Bugs in system-software 

computation 

Attack 17 Using stimulation and 

simulation for software 

attacks 

Attack 18 Errors in timing interrupts  

Timing attacks 
Attack 19 Finding time-related bugs 

Attack 20 Time-related scenarios 

Attack 21 Performance attacks 

Attack 22 Finding support 

documentation errors 

User interface 

attacks 

Attack 23  Finding missing or wrong 

alarms 

Attack 24 Finding bugs in help 

documentation 

Attack 25 Finding errors in apps 

Smart and mobile 

phone attacks 

Attack 26 Testing mobile and 

embedded games 

Attack 27 Attacks on app-cloud 

dependencies 

Attack 28 Penetration authentication 

attack test 

Mobile/embedded 

security 

Attack 29 Stealing device data 

Attack 30 Spoofing attacks 

Attack 31 Attacking viruses on the 

run in factories and 

companies 

Attack 32 Combinatorial tests 

Generic attacks Attack 33 Attacks against functional 

bugs and errors 

 

Table 1. Attacks against embedded systems and mobile devices– 
adapted from [17]. 

 

 

 

 

 

Context area Attacks to consider 
Possible 

attacks 

Telecom 

(general) 
1, 2, 3, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 

17, 18, 19, 20, 21, 22, 23, 24, 28, 33 
29, 30, 31, 

32 

Switch 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 

16, 17, 18, 19, 20, 21, 28, 33 

11, 22, 23, 
24, 29, 30, 

31, 32 

Cell  
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 

16, 17, 18, 19, 20, 21, 28, 33 

11, 22, 23, 
24, 29, 30, 

31, 32 

Smart device 
1, 2, 3, 6, 8, 10, 13, 14, 15, 16, 18, 19, 20, 

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33 
4, 5, 7, 12, 

17, 32 

Cell device 
1, 2, 3, 6, 8, 12, 14, 15, 18, 19, 20, 21, 22, 

23, 24, 25, 26, 33 

4, 5, 7, 12, 

17, 28, 30, 
32 

Smartphone 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 
27, 28, 29, 30, 32, 33 

- 

Tablet 
1, 2, 3, 6, 9, 10, 12, 14, 15, 16, 19, 20, 21, 

22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33 
- 

Handheld 

equipment 

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18, 
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 

30, 32, 33 

13, 17 

Medical (info 

system) 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 

27, 28, 29, 30, 32, 33 

11 

General info 

support 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 

27, 28, 29, 30, 33 

32 

Medical (life 

critical) 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 

27, 28, 29, 30, 33 

32 

Patient support 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 

27, 28, 29, 30, 33 

11, 32 

Inserted in 

humans 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 

27, 28, 29, 30, 33 

11, 32 

Mission critical 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 

28, 29, 30, 31, 32, 33 

- 

Life critical 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 
,16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 

29, 30, 32, 33 

31 

Robotics 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 

26, 27, 28, 29, 30, 31, 32, 33 

- 

Industrial/ 

buildings 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 

28, 29, 30, 31, 32, 33 

- 

Machines  
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 

28, 29, 30, 31, 32, 33 

- 

Lights  
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 27, 28, 29, 30, 

31, 32, 33 

22, 23, 24 

Heating, 

ventilation, AC 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 25, 26, 27, 28, 

29, 30, 31, 32, 33 

22, 23, 24 

Building control 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 

28, 29, 30, 32, 33 

31 

Avionics 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 

28, 29, 30, 32, 33 

- 

Automotive 

(general) 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 

26, 27, 28, 29, 30, 32, 33 

- 

Automotive 

(control) 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 

28, 30, 32, 33 

- 

Rockets  
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19, 20, 21, 27, 28, 30, 32, 33 
- 

Spacecraft  
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 
28, 30, 32, 33 

- 

Aircraft 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 
26, 27, 28, 29, 30, 

- 

Home/ office 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 
26, 27, 28, 29, 30, 32, 33 

- 

Control  
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 
26, 27, 28, 29, 30, 32, 33 

- 

Gaming  
1, 2, 3, 6, 11, 12, 21, 22, 23, 24, 25, 26, 27, 

28, 29, 30, 32, 33 
18, 19, 20 

Transportation 

(traffic control, 

railroad) 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 

28, 30, 31, 32, 

- 

Utilities (energy, 

water, sewer, 

others) 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 
28, 30, 31, 32, 33 

- 

Table 2. Map of attacks against embedded systems related to 
domains and areas – adapted from [17]. 
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IV. METHODS FOR ENSURING INTEGRITY, 

INTERNAL CONTROL AND SECURITY OF EMBEDDED 

SYSTEMS 

 

Usually, successful attacks against embedded 

systems give four main problems for these systems 

[18]: 

 

 Modification – unauthorized tampering; 

 Interruption – disrupted availability; 

 Interception – unauthorized access; 

 Fabrication – creation of fictitious system. 

To develop and implement secure systems we 

must see the most used methods by bad intended 

people for breaking systems [19], [20], [29]: 

 Cloning – when someone manages to 

reproduce the entire system with the 

certain purpose to sail it. Many 

components are free and identical 

functions of the device are not so 

important as they can be duplicated; 

 Reverse engineering – when someone 

succeeds in finding out how the system 

works and uses this or even improves 

system`s functionality; 

 Overbuilding – the producer makes more 

copies in detail and often he has even the 

configuration to load in the chip, so it is 

very easy to sell extra devices for extra 

financial gains. 

Secure systems are dependent on security 

principles that protect information in computer 

systems first introduced in 1975 by Saltzer and 

Schroeder [21]: 

 Economy of mechanism – this principle 

refers to the fact that embedded systems 

and cyber-physical systems are 

constraint (resource constraints). Due to 

this, complex security mechanisms 

increase the risk for missed configured 

components making it hard to verify its 

security;  

 Least privilege – any user or program 

should use minimum privilege set 

in order to execute his tasks; 

 In-depth defense – single security measure 

is not enough to defeat 

concomitant attacks; 

 Isolation – this principle aims for isolating 

subsystems, critical resources and 

data from public or external 

access. Hardware and software 

exchanges between users, usually 

leads to security breaches; 

 Minimization of attack area – the number 

of entry points (administrators, external 

access services, running services) in a 

system should have a minimum value 

with requested functionality maintained; 

 Separation of privilege – efficient systems 

should be accessed by more than one 

step (two-factor authentication for 

example); 

 Psychological acceptability – this appears 

when security mechanisms fail. If a 

particular security mechanism hinders a 

system’s usability or accessibility, the 

users may reject it or look for a 

way to circumvent it. 

 Open design – experts believe that open 

designs benefits of more trust than 

closed designs. This depends on who 

uses it and who owns it.  

After all this above, security of FPGA-based 

embedded systems relies on [22], [29]: 

 Device security – device physical 

protection; 

 Data security – loaded configuration must 

meet critical security goals such as data 

authenticity or data integrity.  

The security of these systems, roughly, refers to 

the security of FPGAs chips. So, looking at the 

configuration storing technology, chips can be: 

 SRAM FPGA (Figure 6) – these are 

volatile chips and requires external 

memory (flash or EPROM) to store the 

bitstream. The route from the external 

memory to the chip needed to download 

the bitstream at power up is exposed to 

attacks [19], [23], [29], [30], [31]; 

 Flash FPGA (Figure 7) – can provide 

physical design security and any attempt 

to gain bitstream access involves opening 

the package but they are slower than 

SRAM FPGA [19], [23], [29], [30], [31]; 

 Antifuse FPGA (Figure 8) – can provide 

physical design security and they are 

difficult to read back but they are slower 

and less dense than SRAM FPGA [19], 

[23], [24], [29], [30], [31]. 
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Extern Flash 
PROM
(flash)AES decryption
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AES KEY
(OTP)

AES key
(SRAM)

Security 
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Figure 6. SRAM FPGA security architecture – adapted from [22], 
[29]. 
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Figure 7. Flash FPGA security architecture– adapted from [22], 
[29]. 

 

Figure 8. Cross section antifuse programmer – caption from [24]. 

The methods to secure data in embedded systems 
translate to security applications, as above [22], [25], 
[26], [29]: 

 Data integrity – maintaining and 
assuring data consistency and accuracy 
along entire life cycle; 

 Data confidentiality – implementing 
methods that keep away data from 
wrong people; 

 Data availability – this method is assured 
through severe hardware system 
maintenance, correct functional state of 
the system and daily upgrades and 
updates; 

 Data encryption/ decryption – this is the 
primary method for protecting data 
confidentiality, data integrity and data 
authenticity; 

 Identification/ authentication by 
hardware/ software/ people – this is the 
first line in defense against attacks. 

 Anonymity; 

 Accountability; 

 Non-observability, non-repudiation; 

 Anti-cloning; 

 Anti-overbuilding; 

 Safe token; 

 Cryptographic key management; 

 Anti-piracy; 

 Anti-reverse engineering; 

 Anti-tamper. 

In the last years, experts developed a security 
architecture (Figure 9) for embedded systems that 
joins the properties of security term, necessarily 
services and approaches methods of security 
elements. All starts with a strategy plan followed by 
[27]: 

 Security policy and strategy – is one of 
the most important features that leads to 
future system requirements. It contains 
necessarily security properties, 
violations that can affect the system, 
risks that can show up and approaches 
for specific violations.  Security policy 
and strategy helps security services; 

 Services – refers to safety and security 
mechanisms and devices used to ensure 
system and data security and also 
security for the peoples that work on 
developing and implementing the 
system. Services are divided in security 
services and security support services. 
While the first category controls 
potential or actual security properties 
violations and depends on available 
physical, procedural, automated and 
management support mechanisms for 
implementing these services, the second 
category relies on inferior infrastructure 
(security policy and strategy); 

 Mechanisms and implementations – 
these depend on commercial products 
and other tools used for their 
implementation. 
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Figure 9. Security architecture for embedded systems – adapted 
from [24]. 

Approaches of potential crimes and violation 
against FPGA-based embedded systems are highly 
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important while developing the system and represent 
the challenges for ensuring the integrity, internal 
control and security of these systems. These 
approaches are [27]: 

 Planning – refers to prevention, detections 
and response procedures and usually these 
are found in the documentation of the 
system; 

 Prevention- protects security attributes of 
the system by blocking unwanted activities 
that can compromise the properties form 
security policy and strategy; 

 Detection – detects and identifies undesired 
activities; 

 Diligence – this method refers to anticipated 
security measures that improve the security 
overall; 

 Response – actions and procedures used 
after undesired detected actions. 

But, after all this above, the architecture from 
Figure 9 comes up with some question marks. To 
implement, produce, administrate, maintain and use 
an embedded system as described so far there is a 
large number of participants involved and their 
interest in security fluctuate which goes to conflicts. 
While some supports cooperation others focus only 
autonomy, depending on security interests (methods 
used to secure the system) [28].  

Interest in confidentiality, anonymity, non-
observability, detecting modifications and violations 
accentuates autonomy, while availability, 
accountability, non-repudiation, evidence and 
interception accentuates cooperation between 
participants [28]. 

If autonomy and cooperation are close to 
involved participants, at the level of security, 
integrity and internal control implemented in a 
system, the impact is on requirements and technical 
properties that the system must answer to such as 
performance or utility. Figure 10 shows how these 
properties and requirements support or block one 
another for proper functioning of the embedded 
system. 
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Figure 10. Impact between the requirements of embedded system – 
adapted from [27]. 

 

V. FUTURE WORK 

Future work focuses on detailing the methods for 

ensuring the integrity, confidentiality, and 

availability of FPGA-based embedded systems with 

simulation and practical results, on implementing 

confidentiality and integrity techniques and 

designing a secure and cost-effective solution for a 

FPGA-based embedded system. 

This research is the first step in designing and 

implementing new methods and techniques for 

secure hardware, design security and data security of 

FPGA-based embedded systems focusing on those 

with valuable and sensitive data passing through 

such as cryptographic devices. 

VI.     CONCLUSION 

Modern FPGA - based embedded systems are 

processing, controlling and collecting sensitive 

information that motivates attackers to steal 

intellectual property of these systems thorough more 

and more sophisticated attacks. 

The principles, architectures and challenges that 

are the base for ensuring the integrity, internal 

control and security of FPGA-based embedded 

systems relies on finding an optimal solution that 

can accomplish required requirements, meet 

constraints and that can offer imposed security 

principles. 

Future security characteristics must keep an eye 

on three main features: the need to talk about new 

threats, fast growing of the value of intellectual 

property and increasing sophistication of methods 

and equipment that hackers use [23,32]. 
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