
Journal of Electrical Engineering, Electronics, Control and Computer Science

JEEECCS, Volume 3, Issue 7, pages 37-45, 2017

Principles, Architectures and Challenges for

Ensuring the Integrity, Internal Control and

Security of Embedded Systems

Fernando Georgel Bîrleanu

Faculty of Electronics, Communications and

Computers

University of Pitesti

Pitesti, Romania

birleanu.fernando@gmail.com

Nicu Bizon
Faculty of Electronics, Communications and

Computers, University of Pitesti, Pitesti, Romania

nicubizon@upit.ro
2
University Politehnica of Bucharest, Doctoral

School, Bucharest, Romania

nicubizon@yahoo.com

Abstract – This paper is a review of the main

principles, architectures and challenges designed for

ensuring the integrity, internal control and security of

Embedded Systems based of Field-Programmable Gate

Array (FPGA) technology, such as cryptographic

devices and modules or monitoring devices of distant

sensitive data.

Keywords: principles, architectures, challenges, internal

control, integrity, security, embedded, FPGA, attacks,

hackers.

I. INTRODUCTION

Embedded systems are “information processing

systems embedded into enclosing products” [1], [2].

Nowadays embedded systems represent around
90% of all commercial and research computing
devices [3].

Field-Programmable Gate Arrays (FPGA) have
become one of the first choices of computation in
most of today embedded systems because these chips
are right in the middle of fast time to market,
flexibility, field programmability, performance, cost
efficiency, real-time guarantees and simple design
cycle which are typical specifications of most of
embedded systems [4]. These systems are more and
more accepted and used because a single chip
combines communication interfaces, digital
components, processors and digital logic design [5].

Some of the main advantages that FPGAs come
with are [5]:

 Reconfigurability – designs can be
reconfigured and modified whenever the
developer wishes;

 High speed – implementations use fast
clock rates;

 Parallelism – parallelism computation
involves simultaneously execution tasks
without computation loading. Developer
can instantiate on the same FGPA chip

multiple modules or hardware
implementations;

 Reliability – no operating system to
change design uptime;

 IP (Intellectual Property) protection –
hard to apply reverse engineering
methods on the hardware
implementation.

According to [2], [6] and [7] a concept named
“cyber-physical system” (CPS) has been introduced
in 2006 and shows the strong synergy between
embedded systems and the physical environment.

 This concept represents systems that incorporate
computational algorithms, physical components and
networking. Figure 1 shows a concept of CPSs.

Cyber-Physical Systems

 Communication
 Robotics
 Military
 Energy
 Transportation
 Consumer
 Health Care
 Infrastructure

 Intelligent
 Real Time
 Adaptive or

Predictive
 Networked and/

or Distributed
(possibly with Wireless
Sensing and Actuation)

Feedback
Systems

 Humans in
the Loop

Improved
Design Tools
that ENABLE

Design
Methodology

Cyber
security

 Privacy
 Resilience
 Intrusion

Detection
 Malicious

Attacks

Scalability
and

Complexity
Management

Validation
and

Verification

Specification,
Modeling and

Analysis

 Networking
 Time

Synchronization
 Interoperability
 Heterogeneous

and Hybrid
Models

 Synthesis
 Modularity and

Composability
 Interfacing with

Legacy Systems

 Simulation
 Assurance
 Certification
 Stohastic

Models

Cyber-Physical Systems

 Communication
 Robotics
 Military
 Energy
 Transportation
 Consumer
 Health Care
 Infrastructure

 Intelligent
 Real Time
 Adaptive or

Predictive
 Networked and/

or Distributed
(possibly with Wireless
Sensing and Actuation)

Feedback
Systems

 Humans in
the Loop

Improved
Design Tools
that ENABLE

Design
Methodology

Cyber
security

 Privacy
 Resilience
 Intrusion

Detection
 Malicious

Attacks

Scalability
and

Complexity
Management

Validation
and

Verification

Specification,
Modeling and

Analysis

 Networking
 Time

Synchronization
 Interoperability
 Heterogeneous

and Hybrid
Models

 Synthesis
 Modularity and

Composability
 Interfacing with

Legacy Systems

 Simulation
 Assurance
 Certification
 Stohastic

Models

HAVE
APPLICATIONS

IN

NEEDARE

POSSIBLY
WITH

THAT
ARE

THAT
SUPPORTS

OF THROUGH

Cyber-Physical Systems

 Communication
 Robotics
 Military
 Energy
 Transportation
 Consumer
 Health Care
 Infrastructure

 Intelligent
 Real Time
 Adaptive or

Predictive
 Networked and/

or Distributed
(possibly with Wireless
Sensing and Actuation)

Feedback
Systems

 Humans in
the Loop

Improved
Design Tools
that ENABLE

Design
Methodology

Cyber
security

 Privacy
 Resilience
 Intrusion

Detection
 Malicious

Attacks

Scalability
and

Complexity
Management

Validation
and

Verification

Specification,
Modeling and

Analysis

 Networking
 Time

Synchronization
 Interoperability
 Heterogeneous

and Hybrid
Models

 Synthesis
 Modularity and

Composability
 Interfacing with

Legacy Systems

 Simulation
 Assurance
 Certification
 Stohastic

Models

HAVE
APPLICATIONS

IN

NEEDARE

POSSIBLY
WITH

THAT
ARE

THAT
SUPPORTS

OF THROUGH

Figure 1. Concept of Cyber-Physical Systems – adapted from
[8].

As we can see in the figure above this concept
joins three essential parts [9]:

 The first part is a definition of these
systems;

Fernando Georgel Bîrleanu, Nicu Bizon 38

 The second part refers to methods and
tools imperative to implementation;

 The third part exemplifies main areas
CPSs find their applicability.

These systems focus on computational and
physical processes integration and represent the next
generation of embedded systems, while the old
generation concentrates more on computing
processes [9].

National Science Foundation believes that this
new technology can and will change the way people
interfere with engineered systems in the same way
that Internet did between people and information
[10].

Therefore, embedded systems are part of our lives
because we find them in current critical areas that
require high protection and security.

Thus, the structure of this study is the following:
the first section is an introduction in FPGA-based
embedded systems, the second one presents how an
embedded system is designed and the main features
that these systems should achieve, the third part is
about attackers and attacks against embedded
systems, the fourth part shows the main principles,
architectures and challenges used to secure these
systems, the fifth part reveals future research work
and the last section concludes the paper.

II. EMBEDDED SYSTEMS - DESIGN AND FEATURES

In general, the process for designing embedded

systems involves four steps [11]:

 Creating the architecture;

 Implementing the architecture;

 Testing the system;

 Maintaining the system.

Figure 2 shows the steps above but in detail:

Product
Concept

Requirements
Preliminary

Analysis

Architecture
Design

Creation

Architectural
Version

Developing

Deliver
Version

Review and
Feedback

Feedback
Integration

Feedback
Integration

System
Deliver and

Maintain

System
Review and

Test

System
Develop and
Implement

Deliver Final
Architectural

Version

Product
Concept

Requirements
Preliminary

Analysis

Architecture
Design

Creation

Architectural
Version

Developing

Deliver
Version

Review and
Feedback

Feedback
Integration

Feedback
Integration

System
Deliver and

Maintain

System
Review and

Test

System
Develop and
Implement

Deliver Final
Architectural

Version

Figure 2. Designing process of embedded systems – adapted
from [11].

This kind of architecture is only a structure
formed with interacting elements with certain
properties and it not shows implementing details such
as hardware circuit design or source code, but which
can solve some challenges or barriers in developing
the system, such as [11]:

 Determining the integrity of the system;

 Cost limitations;

 Defining the concept of the system;

 Determining available and necessary
resources;

 Salability;

 Marketability.

An embedded system or a cyber-physical system
based on FPGA technology usually use a system
design flow as described in Figure 3 [2].

System Specification

ARE

Modeling Constraint Identification

Architecture Selection

Mapping and Partitioning

Parameter Selection

Scheduling

Final Synthesis

System Specification

ARE

Modeling Constraint Identification

Architecture Selection

Mapping and Partitioning

Parameter Selection

Scheduling

Final Synthesis

Figure 3. System design flow of FPGA-based ESs and CPSs –
adapted from [2].

The System Specification step refers to general
tasks and requirements the system must perform. The
second step is divided in two parallel steps:
Modelling that fragments step one in smaller
punctual modules and Constraint Identification that
provides a suite of constraints depending on the
environment, performance goals, security demands or
operational development setting. In the third step,
Architecture Selection, the developer selects the most
appropriate hardware baseboard that can support
future requirements. Mapping and Partitioning refers
to achieve optimum performance where the designer
divides assignments among available processing
units at step four, while step five, Parameter
Selection, looks for high performance and efficiency
by adapting system execution parameters. Step six,
Scheduling, is for finding best solutions with
returning to previous steps in opposite cases. Final
synthesis, also the final step, reviews solutions in step
six and if requirements and constraints are
accomplished, the design will start with final
synthesis of the low-level implementations
(hardware/ software).

According to hardware and software specs,
system design flow and specific requirements, main
features of these embedded systems are [1]:

 An embedded system must be efficient
(power consumption, run-time
efficiency, design cost, code size,
weight);

Principles, Architectures and Challenges for Ensuring the Integrity, Internal Control and Security of Embedded Systems

39

 An embedded system must be reliable:

o Available – the probability that
a system is available;

o Maintainable – the probability
that a broken system can be
fixed in precise time;

o Safe – the property that a
broken system will not cause
any injuries;

o Secure – the property that
sensitive confidential data
remains confidential and
original communication is
guaranteed.

 These systems are related with the
physical environment through sensors
and actuators. Therefore, data is
collected and specific environment is
controlled;

 These systems are committed to a
certain application;

 Many of them are hybrid systems
including analog and digital modules;

 Embedded systems must meet real-time
constraints;

 These systems dispose of dedicated
user-interface.

After we have seen how embedded systems are
designed and their features, we must find out how
these systems are attacked, who are the attackers and
how attacks against embedded systems are classified.

III. ATTACKERS AND ATTACKS AGAINST

EMBEDDED SYSTEMS

Modern FPGA-based embedded systems control

and process more and more sensitive data and
information. Therefore, less or more equipped
hackers are determined and motivated to steal
Intellectual Property of these systems through more
and more sophisticated attacks. How important to
protect systems is given by how sensitive is
information stored in a device inclined to attacks
[12].

In the last decades attacks experienced high
complexity making it very difficult for developers to
build defense mechanisms. This is not thanks to high
scientific knowledges of the attackers, but due to the
easiness to find tools in the on-line world and free
market [12], [13]. Figure 4 shows the dependencies
between attacker`s knowledges and complexity level
of attacks in the last decades.

Usually, an attack follows an action diagram as
described in Figure 5. This diagram is also suitable
for another area of systems and devices that can be
attacked (such as breaking computer networks or
intelligent transport systems), but in this case, is
adapted for breaking FPGA-based embedded systems
[14].

Figure 4. Dependencies between attacker`s knowledges and
complexity level of attacks in the last decades – adapted from [12],

[13], [29].

ATTACKER

TOOL

OBJECTIVES

ACTION

UNAUTHORIZED
RESULTS

TARGET

VULNERABILITY

AMATEURS
HACKERS
EXPERTS

ORGANIZATIONS
TERRORISTS

HW/SW
DEDICATED

EQUIPMENTS

DESIGN
CONFIGURATION
IMPLEMENTATION

BACKDOOR

HW ATTACKS
(ACTIVE/
PASSIVE)

SW ATTACKS
FIRMWARE

ATTACKS

DATA
CONFIGURATION

PROCESS
CRYPTOGRAPHIC

KEYS

CLONING
INCREASED

ACCESS
CORRUPT DATA

REVERSE
ENGINEERING

FINANCIAL GAIN
CHALLENGE

FINDING SECRET
DATA

TERRORISM

ATTACKER

TOOL

OBJECTIVES

ACTION

UNAUTHORIZED
RESULTS

TARGET

VULNERABILITY

AMATEURS
HACKERS
EXPERTS

ORGANIZATIONS
TERRORISTS

HW/SW
DEDICATED

EQUIPMENTS

DESIGN
CONFIGURATION
IMPLEMENTATION

BACKDOOR

HW ATTACKS
(ACTIVE/
PASSIVE)

SW ATTACKS
FIRMWARE

ATTACKS

DATA
CONFIGURATION

PROCESS
CRYPTOGRAPHIC

KEYS

CLONING
INCREASED

ACCESS
CORRUPT DATA

REVERSE
ENGINEERING

FINANCIAL GAIN
CHALLENGE

FINDING SECRET
DATA

TERRORISM

Figure 5. Diagram of an attack – adapted from [14].

Attacks variate but those which succeed run
through [12]:

 Studying and exploring for
vulnerabilities or any information that
can be used to attack;

 Breaking all defense mechanisms and
tools;

 Modifying critical security parameters;

 Disperse to other systems or much
sensitive parts of the device/ system;

 Finding and assimilate sensitive data or
interest information and/ or freezing
the system.

Fernando Georgel Bîrleanu, Nicu Bizon 40

In the moment that a developer has identified the

benefits and possible attacks against his system he

also must find potential attackers that can try to

break it according to what they are looking for.

Thus, those that can attempt to penetrate embedded

systems are divided in four categories [15]:

 Remote or distant attackers – they don`t
have physical access to the device but
they can have access to a similar device
in order to develop the attack. This
category relies on exploring software
vulnerabilities and user errors. Rising
software complexity of embedded
systems goes to more bugs that this type
of attacker can exploit;

 Security experts – this category aims for
finding and developing attacks that can
be used for various systems.
Technically speaking, most capable to
attacks are security experts/ specialists
and criminal organizations;

 Trusted developers – this type of
attackers refers to the employees of
companies that deliberately have stolen
secret information for specific purposes.
A simple way to justify this category of
attacks is that it is easier to bribe
someone with access to secret
information than to apply reverse
engineering to a piece of silicon;

 Device or system owners – this category
has the objective to break own systems
and to see how security mechanisms
and tools handle with attacks and how
they resist against attacks. Usually, this
type of attackers is highly motivated but
pretty low in technical and scientific
knowledges, thereby, they appeal to on-
line environment where they find a lot
of tools to develop desired types of
attacks. The risk is that they don`t know
what backdoors or viruses these tools
can come with.

Attackers described above use three methods to
attack [15]:

 Method one – hack attack – the attacker
is capable only of software attacks
(malware, viruses);

 Method two – shack attack – refers to
low budget attacks using free market
tools where, although physical access to
the device exists, the equipment they
use cannot perform complex attacks;

 Method three – lab attack – in this case
the attackers have access to laboratory
equipment and for instance they can
apply reverse engineering to a device at
the level of transistor details or analyze
cryptographic keys.

As we know who are the attackers and how they

attack classing attacks follows, depending on three

main considerations. According to [16], a new

classification of embedded systems attacks is

created:

 Programmability level:

o Hardware attacks (reverse engineering,

hardware Trojan, data monitoring, traffic

monitoring, DoS, EME, SPA, DPA);

o Software attacks (viruses, software Trojan,

packet reply, buffer overload);

o Firmware attacks (OS kernel).

 Integration level:

o Intellectual Property level attacks

(modifying source code);

o Chip level attacks (cloning, bitstream

reverse engineering, fault attacks);

o Board level attacks:

 Invasive attacks (requires physical

access to the board and chemical/

mechanical/ imaging processing

techniques are used);

 Semi-invasive attacks (works only

for single or doubled layered board

simply through scanning top and/

or bottom of the board and using

CAD – computer-aided design);

 Non-invasive attacks:

- Passive attacks (observing

and monitoring data);

- Active attacks (modifying

clock signal and supply

voltage).

 Life cycle phase:

o Design phase attacks (cloning, adding

undesired components);

o Fabrication phase attacks (copies);

o After-production attacks (design cloning,

extracting confidential information).

The most important challenges in defending

against attacks are [12]:

 Speed of the attack;

 Complexity of an attack;

 The simplicity of used tools.

Table 1 shows most common attacks to break

embedded systems and mobile devices depending on

several features, while Table 2 represents a map of

these attacks related to domains and areas where

systems can be found.

Principles, Architectures and Challenges for Ensuring the Integrity, Internal Control and Security of Embedded Systems

41

Attack`s

number

Attack Criterion

Attack 1 Static code analysis

Developer attacks

Attack 2 White-box method for

finding data computation

bugs

Attack 3 White box structural

testing

Attack 4 Finding hardware-system

unhandled uses in software

Control system

attacks

Attack 5 Errors on HW to SW and

SW to HW signal interface

Attack 6 Long duration control

attack

Attack 7 Breaking control laws and

software logic

Attack 8 Forcing unusual bug cases

Attack 9 Braking software with

hardware

Hardware software

attacks

Attack 10 Finding bugs in HW-SW

communications

Attack 11 Breaking software error

recovery

Attack 12 Testing integration and

interface

Attack 13 Finding errors in software-

system fault tolerance

Attack 14 Breaking digital software

communications

Mobile and

embedded software

attacks

Attack 15 Finding data errors and

bugs

Attack 16 Bugs in system-software

computation

Attack 17 Using stimulation and

simulation for software

attacks

Attack 18 Errors in timing interrupts

Timing attacks
Attack 19 Finding time-related bugs

Attack 20 Time-related scenarios

Attack 21 Performance attacks

Attack 22 Finding support

documentation errors

User interface

attacks

Attack 23 Finding missing or wrong

alarms

Attack 24 Finding bugs in help

documentation

Attack 25 Finding errors in apps

Smart and mobile

phone attacks

Attack 26 Testing mobile and

embedded games

Attack 27 Attacks on app-cloud

dependencies

Attack 28 Penetration authentication

attack test

Mobile/embedded

security

Attack 29 Stealing device data

Attack 30 Spoofing attacks

Attack 31 Attacking viruses on the

run in factories and

companies

Attack 32 Combinatorial tests

Generic attacks Attack 33 Attacks against functional

bugs and errors

Table 1. Attacks against embedded systems and mobile devices–
adapted from [17].

Context area Attacks to consider
Possible

attacks

Telecom

(general)
1, 2, 3, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 28, 33
29, 30, 31,

32

Switch
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 28, 33

11, 22, 23,
24, 29, 30,

31, 32

Cell
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 28, 33

11, 22, 23,
24, 29, 30,

31, 32

Smart device
1, 2, 3, 6, 8, 10, 13, 14, 15, 16, 18, 19, 20,

21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33
4, 5, 7, 12,

17, 32

Cell device
1, 2, 3, 6, 8, 12, 14, 15, 18, 19, 20, 21, 22,

23, 24, 25, 26, 33

4, 5, 7, 12,

17, 28, 30,
32

Smartphone
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 32, 33

-

Tablet
1, 2, 3, 6, 9, 10, 12, 14, 15, 16, 19, 20, 21,

22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33
-

Handheld

equipment

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 14, 15, 16, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

30, 32, 33

13, 17

Medical (info

system)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 32, 33

11

General info

support

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

27, 28, 29, 30, 33

32

Medical (life

critical)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

27, 28, 29, 30, 33

32

Patient support
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 33

11, 32

Inserted in

humans

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 33

11, 32

Mission critical
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27,

28, 29, 30, 31, 32, 33

-

Life critical
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
,16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28,

29, 30, 32, 33

31

Robotics
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 31, 32, 33

-

Industrial/

buildings

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27,

28, 29, 30, 31, 32, 33

-

Machines
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27,

28, 29, 30, 31, 32, 33

-

Lights
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 27, 28, 29, 30,

31, 32, 33

22, 23, 24

Heating,

ventilation, AC

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 25, 26, 27, 28,

29, 30, 31, 32, 33

22, 23, 24

Building control
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27,

28, 29, 30, 32, 33

31

Avionics
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27,

28, 29, 30, 32, 33

-

Automotive

(general)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 30, 32, 33

-

Automotive

(control)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27,

28, 30, 32, 33

-

Rockets
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 27, 28, 30, 32, 33
-

Spacecraft
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27,
28, 30, 32, 33

-

Aircraft
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30,

-

Home/ office
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 32, 33

-

Control
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,
26, 27, 28, 29, 30, 32, 33

-

Gaming
1, 2, 3, 6, 11, 12, 21, 22, 23, 24, 25, 26, 27,

28, 29, 30, 32, 33
18, 19, 20

Transportation

(traffic control,

railroad)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27,

28, 30, 31, 32,

-

Utilities (energy,

water, sewer,

others)

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27,
28, 30, 31, 32, 33

-

Table 2. Map of attacks against embedded systems related to
domains and areas – adapted from [17].

Fernando Georgel Bîrleanu, Nicu Bizon 42

IV. METHODS FOR ENSURING INTEGRITY,

INTERNAL CONTROL AND SECURITY OF EMBEDDED

SYSTEMS

Usually, successful attacks against embedded

systems give four main problems for these systems

[18]:

 Modification – unauthorized tampering;

 Interruption – disrupted availability;

 Interception – unauthorized access;

 Fabrication – creation of fictitious system.

To develop and implement secure systems we

must see the most used methods by bad intended

people for breaking systems [19], [20], [29]:

 Cloning – when someone manages to

reproduce the entire system with the

certain purpose to sail it. Many

components are free and identical

functions of the device are not so

important as they can be duplicated;

 Reverse engineering – when someone

succeeds in finding out how the system

works and uses this or even improves

system`s functionality;

 Overbuilding – the producer makes more

copies in detail and often he has even the

configuration to load in the chip, so it is

very easy to sell extra devices for extra

financial gains.

Secure systems are dependent on security

principles that protect information in computer

systems first introduced in 1975 by Saltzer and

Schroeder [21]:

 Economy of mechanism – this principle

refers to the fact that embedded systems

and cyber-physical systems are

constraint (resource constraints). Due to

this, complex security mechanisms

increase the risk for missed configured

components making it hard to verify its

security;

 Least privilege – any user or program

should use minimum privilege set

in order to execute his tasks;

 In-depth defense – single security measure

is not enough to defeat

concomitant attacks;

 Isolation – this principle aims for isolating

subsystems, critical resources and

data from public or external

access. Hardware and software

exchanges between users, usually

leads to security breaches;

 Minimization of attack area – the number

of entry points (administrators, external

access services, running services) in a

system should have a minimum value

with requested functionality maintained;

 Separation of privilege – efficient systems

should be accessed by more than one

step (two-factor authentication for

example);

 Psychological acceptability – this appears

when security mechanisms fail. If a

particular security mechanism hinders a

system’s usability or accessibility, the

users may reject it or look for a

way to circumvent it.

 Open design – experts believe that open

designs benefits of more trust than

closed designs. This depends on who

uses it and who owns it.

After all this above, security of FPGA-based

embedded systems relies on [22], [29]:

 Device security – device physical

protection;

 Data security – loaded configuration must

meet critical security goals such as data

authenticity or data integrity.

The security of these systems, roughly, refers to

the security of FPGAs chips. So, looking at the

configuration storing technology, chips can be:

 SRAM FPGA (Figure 6) – these are

volatile chips and requires external

memory (flash or EPROM) to store the

bitstream. The route from the external

memory to the chip needed to download

the bitstream at power up is exposed to

attacks [19], [23], [29], [30], [31];

 Flash FPGA (Figure 7) – can provide

physical design security and any attempt

to gain bitstream access involves opening

the package but they are slower than

SRAM FPGA [19], [23], [29], [30], [31];

 Antifuse FPGA (Figure 8) – can provide

physical design security and they are

difficult to read back but they are slower

and less dense than SRAM FPGA [19],

[23], [24], [29], [30], [31].

SRAM FPGA- Factory
Configuration

(SRAM)

Extern Flash
PROM
(flash)AES decryption

(logic)
CRC

(logic)

AES KEY
(OTP)

AES key
(SRAM)

Security
lock-bits

(OTP)

Figure 6. SRAM FPGA security architecture – adapted from [22],
[29].

Principles, Architectures and Challenges for Ensuring the Integrity, Internal Control and Security of Embedded Systems

43

Flash FPGA Configuration -
Flash ROM, eNVM

(flash)

128-bit AES key
(flash)

Security lock-bits
(flash)

128-bit FlashLock
Passcode (flash)

Match?

(logic)

Flash Security Segment

Strong message
authentication

(logic)

128-bit AES
decryption (logic)

JTAG input

Y/N

Programming
disabled

Plaintext
bitstream

Decrypted
bitstream

AES encrypted
bitsream

Security options

Figure 7. Flash FPGA security architecture– adapted from [22],
[29].

Figure 8. Cross section antifuse programmer – caption from [24].

The methods to secure data in embedded systems
translate to security applications, as above [22], [25],
[26], [29]:

 Data integrity – maintaining and
assuring data consistency and accuracy
along entire life cycle;

 Data confidentiality – implementing
methods that keep away data from
wrong people;

 Data availability – this method is assured
through severe hardware system
maintenance, correct functional state of
the system and daily upgrades and
updates;

 Data encryption/ decryption – this is the
primary method for protecting data
confidentiality, data integrity and data
authenticity;

 Identification/ authentication by
hardware/ software/ people – this is the
first line in defense against attacks.

 Anonymity;

 Accountability;

 Non-observability, non-repudiation;

 Anti-cloning;

 Anti-overbuilding;

 Safe token;

 Cryptographic key management;

 Anti-piracy;

 Anti-reverse engineering;

 Anti-tamper.

In the last years, experts developed a security
architecture (Figure 9) for embedded systems that
joins the properties of security term, necessarily
services and approaches methods of security
elements. All starts with a strategy plan followed by
[27]:

 Security policy and strategy – is one of
the most important features that leads to
future system requirements. It contains
necessarily security properties,
violations that can affect the system,
risks that can show up and approaches
for specific violations. Security policy
and strategy helps security services;

 Services – refers to safety and security
mechanisms and devices used to ensure
system and data security and also
security for the peoples that work on
developing and implementing the
system. Services are divided in security
services and security support services.
While the first category controls
potential or actual security properties
violations and depends on available
physical, procedural, automated and
management support mechanisms for
implementing these services, the second
category relies on inferior infrastructure
(security policy and strategy);

 Mechanisms and implementations –
these depend on commercial products
and other tools used for their
implementation.

Strategic plan
(requirements, constraints)

Strategic plan
(requirements, constraints)

Security strategy and policy

Services

Mechanisms and implementations

Strategic plan
(requirements, constraints)

Security strategy and policy

Services

Mechanisms and implementations

Prevention, detection,
planning, response,

diminuation.

Confidentiality,
Availability,

Integrity,
Accountability.

Vulnerability
assessment, risk and

threat estimation, asset
valuation, risk
minimization.

Unauthorized
disclosure,
Usurpation,
Deception.

Training, configuration
management, information
system security policies,

disaster recovery.

Accounting, access control,
identification and

authentication, system
recovery.

Encryption, firewalls, filters,
proxies, hashing, integrity

monitoring, biometrics,
tokens, audit, intrusion

detection systems.

Guards, locks,
vaults, doors,
sensors, walls,

Backup, restore,
security

administration,
sign-in,

configuration
procedures.

Strategic plan
(requirements, constraints)

Security strategy and policy

Services

Mechanisms and implementations

Prevention, detection,
planning, response,

diminuation.

Confidentiality,
Availability,

Integrity,
Accountability.

Vulnerability
assessment, risk and

threat estimation, asset
valuation, risk
minimization.

Unauthorized
disclosure,
Usurpation,
Deception.

Training, configuration
management, information
system security policies,

disaster recovery.

Accounting, access control,
identification and

authentication, system
recovery.

Encryption, firewalls, filters,
proxies, hashing, integrity

monitoring, biometrics,
tokens, audit, intrusion

detection systems.

Guards, locks,
vaults, doors,
sensors, walls,

Backup, restore,
security

administration,
sign-in,

configuration
procedures.

Properties Violations
Risk

management
Approaches

Security
services

Procedural
mechanisms

Physical
mechanisms

Automated
mechanisms

Management
support mechanisms

Strategic plan
(requirements, constraints)

Security strategy and policy

Services

Mechanisms and implementations

Prevention, detection,
planning, response,

diminuation.

Confidentiality,
Availability,

Integrity,
Accountability.

Vulnerability
assessment, risk and

threat estimation, asset
valuation, risk
minimization.

Unauthorized
disclosure,
Usurpation,
Deception.

Training, configuration
management, information
system security policies,

disaster recovery.

Accounting, access control,
identification and

authentication, system
recovery.

Encryption, firewalls, filters,
proxies, hashing, integrity

monitoring, biometrics,
tokens, audit, intrusion

detection systems.

Guards, locks,
vaults, doors,
sensors, walls,

Backup, restore,
security

administration,
sign-in,

configuration
procedures.

Properties Violations
Risk

management
Approaches

Security
services

Procedural
mechanisms

Physical
mechanisms

Automated
mechanisms

Management
support mechanisms

ToolsProducts

Security planning,
authorization, system

security policy, registration,
concept of operations,

operational maintenance.

Security support
services

Strategic plan
(requirements, constraints)

Security strategy and policy

Services

Mechanisms and implementations

Prevention, detection,
planning, response,

diminuation.

Confidentiality,
Availability,

Integrity,
Accountability.

Vulnerability
assessment, risk and

threat estimation, asset
valuation, risk
minimization.

Unauthorized
disclosure,
Usurpation,
Deception.

Training, configuration
management, information
system security policies,

disaster recovery.

Accounting, access control,
identification and

authentication, system
recovery.

Encryption, firewalls, filters,
proxies, hashing, integrity

monitoring, biometrics,
tokens, audit, intrusion

detection systems.

Guards, locks,
vaults, doors,
sensors, walls,

Backup, restore,
security

administration,
sign-in,

configuration
procedures.

Properties Violations
Risk

management
Approaches

Security
services

Procedural
mechanisms

Physical
mechanisms

Automated
mechanisms

Management
support mechanisms

ToolsProducts

Security planning,
authorization, system

security policy, registration,
concept of operations,

operational maintenance.

Security support
services

Figure 9. Security architecture for embedded systems – adapted
from [24].

Approaches of potential crimes and violation
against FPGA-based embedded systems are highly

Fernando Georgel Bîrleanu, Nicu Bizon 44

important while developing the system and represent
the challenges for ensuring the integrity, internal
control and security of these systems. These
approaches are [27]:

 Planning – refers to prevention, detections
and response procedures and usually these
are found in the documentation of the
system;

 Prevention- protects security attributes of
the system by blocking unwanted activities
that can compromise the properties form
security policy and strategy;

 Detection – detects and identifies undesired
activities;

 Diligence – this method refers to anticipated
security measures that improve the security
overall;

 Response – actions and procedures used
after undesired detected actions.

But, after all this above, the architecture from
Figure 9 comes up with some question marks. To
implement, produce, administrate, maintain and use
an embedded system as described so far there is a
large number of participants involved and their
interest in security fluctuate which goes to conflicts.
While some supports cooperation others focus only
autonomy, depending on security interests (methods
used to secure the system) [28].

Interest in confidentiality, anonymity, non-
observability, detecting modifications and violations
accentuates autonomy, while availability,
accountability, non-repudiation, evidence and
interception accentuates cooperation between
participants [28].

If autonomy and cooperation are close to
involved participants, at the level of security,
integrity and internal control implemented in a
system, the impact is on requirements and technical
properties that the system must answer to such as
performance or utility. Figure 10 shows how these
properties and requirements support or block one
another for proper functioning of the embedded
system.

SYSTEM
TYPE

APPLICATION

SECURITY
COMPONENT

REQUIREMENTS

Correct application
function

Performance,
Cost,

Adaptability,
Safety,

Ease of use

Confidentiality,
Integrity,

Availability,
Accountability

Correct security
function (access

control, biometrics,
fingerprint, PKI)

Performance,
Cost,

Adaptability,
Safety,

Ease of use

Confidentiality,
Integrity,

Availability,
Accountability

BLOCKS

SUPPORT

BLOCKS

SUPPORTS

SUPPORTS BLOCKS

SUPPORTS

Figure 10. Impact between the requirements of embedded system –
adapted from [27].

V. FUTURE WORK

Future work focuses on detailing the methods for

ensuring the integrity, confidentiality, and

availability of FPGA-based embedded systems with

simulation and practical results, on implementing

confidentiality and integrity techniques and

designing a secure and cost-effective solution for a

FPGA-based embedded system.

This research is the first step in designing and

implementing new methods and techniques for

secure hardware, design security and data security of

FPGA-based embedded systems focusing on those

with valuable and sensitive data passing through

such as cryptographic devices.

VI. CONCLUSION

Modern FPGA - based embedded systems are

processing, controlling and collecting sensitive

information that motivates attackers to steal

intellectual property of these systems thorough more

and more sophisticated attacks.

The principles, architectures and challenges that

are the base for ensuring the integrity, internal

control and security of FPGA-based embedded

systems relies on finding an optimal solution that

can accomplish required requirements, meet

constraints and that can offer imposed security

principles.

Future security characteristics must keep an eye

on three main features: the need to talk about new

threats, fast growing of the value of intellectual

property and increasing sophistication of methods

and equipment that hackers use [23,32].

ACKNOWLEDGEMENTS

The research that led to the results shown here

were obtained during the PhD stage #

SD04/10/01.10.2016.

REFERENCES

[1] P. Marwedel, “Embedded system design: Embedded systems

foundations of cyber-physical systems”, Springer Science

& Business Media, 2011.

[2] K. Jiang, ”Security-Driven Design of Real-Time Embedded

Systems”, LiU Tryck, 2015.

[3] K. C. Pabbuleti, “Performance Optimization of Public Key

Cryptography on Embedded Platforms”, Faculty of the

Virginia Polytechnic Institute and State University, 2014.

[4] T. Huffnire, B. Brotherton, T. Sherwood, R. Kastner, T.

Levin, T. D. Nguyen, and Cynthia Irvine, ”Managing

Security in FPGA-Based Embedded Systems”, IEEE

Design & Test of Computers (Volume: 25, Issue: 6, Nov.-

Dec. 2008).

[5] R. Dubey, “Introduction to Embedded System Design Using

Field Programmable Gate Arrays”, Springer, 2009.

[6] E. A. Lee, ”Cyber physical systems: Design challenges”, In

IEEE International Symposium on Object Oriented Real-

Time Distributed Computing (ISORC), pages 363{369.

IEEE, 2008.

[7] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, ”Cyber-

physical systems: the next computing revolution”, In

Design Automation Conference (DAC), pages 731{736.

ACM, 2010.

[8] http://cyberphysicalsystems.org/

http://cyberphysicalsystems.org/

Principles, Architectures and Challenges for Ensuring the Integrity, Internal Control and Security of Embedded Systems

45

[9] http://kopustas.elen.ktu.lt/studentai/lib/exe/fetch.php?media=

skaidres.pdf

[10] https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5032

86

[11] T. Noergaard, ”Embedded Systems Architecture – A

Comprehensive Guide for Engineers and Programmers”,

Elsevier, 2005.

[12] M. Ciampa, ”Security Awareness: Applying Practical

Security in Your World”, IEEE Design & Test of

Computers 2010.

[13] P. Gregory, “CISSP guide to security essentials”, Course

Technology, Cengage Learning, Boston, 2010.

[14] M. Chowdhury, A. Apon, and K. Dey, ”Data Analytics for

Intelligent Transportation Systems”, Elsevier, UK, 2017.

[15] http://infocenter.arm.com/help/index.jsp?topic=/com.arm.do

c.prd29-genc-009492c/ch01s03s04.html

[16] H. Elmiligi, F. Gebali, M. Watheq El-Kharashi, ”Multi-

dimensional analysis of embedded systems security”,

Elsevier, 2017.

[17] J. Duncan Hagar, ”Software Test Attacks to Break Mobile

and Embedded Devices”, CRC Press, 2014.

[18] R. R. Brooks, ”Computer and Network Security –

Navigating Shades of Gray”, CRC Press, 2014.

[19] Lattice Semiconductor, “White Paper – FPGA Design

Security Issues: Using the ispXPGA Family of FPGAs to

Achieve High Design Security”, December 2003.

[20] T. Wollinger, and C. Paar, ”New Algorithms,

Architectures, and Applications for Reconfigurable

Computing”, Kluwer, 2004.

[21] Saltzer, J. H. and Schroeder, M. D. (1975), ”The protection

of information in computer systems”, Proceedings of the

IEEE, Volume 63, No. 9, pp. 1278-1308.

[22] https://www.escrypt.com/fileadmin/escrypt/pdf/Hardware_S

ecurity_for_FPGAs_using_Cryptography_Microsemi_Huet

temann.pdf

[23] S. M. Trimberger, Fellow IEEE, and J. J. Moore , “FGPA

Security: Motivations, Features, and Applications”,

Proceedings of the IEEE (Vol. 102, No. 8, August 2014) .

[24] Microsemi, “Design Security in Nonvolatile Flash and

Antifuse FPGAs”, 2002.

[25] G. Gogniat, T. Wolf, W. Burleson. J. P. Diguet, L. Bossuet,

and R. Vaslin, ”Reconfigurable Hardware for High-

Security/High-Performance Embedded Systems: The

SAFES Perspective”, IEEE Transactions on Very Large

Scale Integration (VLSI) Systems (Volume: 16, Issue: 2,

Feb. 2008).

[26] http://whatis.techtarget.com/definition/Confidentiality-

integrity-and-availability-CIA

[27] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F.

Buschmann, and P. Sommerlad, ”Security Patterns –

Integrating Security and Systems Engineering”, John Wiley

& Sons, Ltd, 2006.

[28] J. Biskup, ”Security in Computing Systems – Challenges,

Approaches and Solutions”, Springer, 2009.

[29] Fernando Bîrleanu, Nicu Bizon, “Reconfigurable computing

in hardware security – a brief review and application”,

Journal of Electrical Engineering, Electronics, Control and

Computer Science (JEEECCS), volume 2, number 1, 2016,

http://jeeeccs.net/index.php/journal/article/view/24

[30] https://www.design-reuse.com/articles/15105/a-security-

tagging-scheme-for-asic-designs-and-intellectual-property-

cores.html

[31] T. Wollinger, and C. Paar, ”How Secure Are FPGAs in

Cryptographic Applications”, Springer, 2003.

[32] E. Pricop, and G. Stamatescu (Eds.), “Recent Advances in

Systems Safety and Security”, Springer, 2016.

http://kopustas.elen.ktu.lt/studentai/lib/exe/fetch.php?media=skaidres.pdf
http://kopustas.elen.ktu.lt/studentai/lib/exe/fetch.php?media=skaidres.pdf
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503286
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch01s03s04.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/ch01s03s04.html
http://jeeeccs.net/index.php/journal/article/view/24
https://www.design-reuse.com/articles/15105/a-security-tagging-scheme-for-asic-designs-and-intellectual-property-cores.html
https://www.design-reuse.com/articles/15105/a-security-tagging-scheme-for-asic-designs-and-intellectual-property-cores.html
https://www.design-reuse.com/articles/15105/a-security-tagging-scheme-for-asic-designs-and-intellectual-property-cores.html

