
Journal of Electrical Engineering, Electronics, Control and Computer Science –

JEEECCS, Volume 4, Issue 11, pages 13-26, 2018

Implementation of SSL/TLS-based security

mechanisms in e-commerce and e-mail

applications using Java

Tulsi Pawan Fowdur, Muhammad Shafeeq Aumeeruddy, Yogesh Beeharry

Department of Electrical and Electronic Engineering

Faculty of Engineering, University of Mauritius

Réduit, Mauritius

p.fowdur@uom.ac.mu, muhammad.aumeeruddy3@umail.uom.ac.mu, y.beeharry@uom.ac.mu

Abstract – E-commerce applications and e-mail

communication are very popular in today's

sophisticated society. However, without proper security

protocols in place, these applications are susceptible to

different types of attacks. The Man-In-The-Middle

(MITM) attack for example is becoming an increasing

threat for e-mail and e-commerce applications. Spoofing

attacks are also a major issue for e-mail applications. In

this paper, a review of the Secure Sockets Layer (SSL)

and Transport Layer Security (TLS) protocols is

performed along with some common security attacks for

both applications. Firstly, a Hyper Text Transfer

Protocol (HTTP) and HTTP Secure (HTTPS) web

server was implemented for the e-commerce application

using Java. The HTTPS server employs the SSL/TLS

protocol and uses a cryptographic self-signed certificate

in order to secure messages between the client and the

server. The e-mail application was implemented using

the Javamail API. It was secured using the TLS protocol

to address MITM attacks on e-mail. The MITM attack

was performed using the Wireshark software by sniffing

data. With the SSL/TLS protocol enabled, data

transmitted was encrypted and MITM attack was

successfully blocked. Spoofing attacks were also tested

and tackled with the SSL/TLS protocol.

Keywords: Man-In-the-Middle attack, SSL, TLS,

Javamail.

I. INTRODUCTION

In this modern era, e-commerce and e-mail
communication have become an integrated part in the
world of businesses and consumers. E-commerce
permits consumers to exchange goods and services by
the medium of the internet with no barriers of time or
distance and e-mail permits correspondence between
any individual around the globe [1]. According to an
e-mail statistic report published by Radicati group, the
total number of worldwide e-mail accounts has
increased from 4.9 to 5.2 billion e-mail accounts
between 2017 and 2018, and by the end of 2019, it
will be increased to about 5.5 billion e-mail accounts
[2]. As stated in Statistia, a business intelligence
portal, sales using e-commerce approximated to
around 2.3 trillion US dollars is expected to increase to
4.88 trillion US dollars in 2021 [3]. Despite all the

benefits that e-commerce and e-mail provide to
businesses and consumers, cyber security remains one
of the most crucial aspects to be handled while
exchanging information which can result into potential
damage for both parties. E-mail applications are
exposed to threats and vulnerabilities such as e-mail
spoofing, phishing attacks, social engineering, e-mail
spamming, transmission of malware and viruses. In
addition, e-commerce applications are also susceptible
to dangers such as phishing, MITM Attack, and
network sniffing attacks. In 2016, Alibaba's Taobao e-
commerce website was attacked by hackers where
they gained access to over 20 million accounts which
resulted in a great loss for the company [4]. If data are
being transmitted over a network insecurely, an
attacker may get access to these data. Consequently,
the substance of e-mail messages and attachments may
be intercepted and viewed by an attacker. A small
attack from an attacker may infect a host with
malware, allowing interception of e-mail messages
and exfiltration of sensitive information [5]. Securing
applications is the use of software, hardware, and
procedural methods to protect applications against
dangers. E-mail and e-commerce applications utilize a
lot of security mechanisms such as Transport Layer
Security/ Secure Socket Layer, Pretty Good Privacy
encryption, Secure Multipurpose Internet Mail
Extensions, Sender Policy Framework record, Domain
Keys Indentified Mail, SenderID. An overview of
research conducted on e-mail and e-commerce security
is given next.

In [6], a demonstration of the use of the SSL
protocol to secure e-commerce, banking and other
business applications required to exchange data was
provided. The protocol was exerted to secure millions
of data every second during online transactions or
when transmitting confidential information over the
Internet. In [7] the author investigated the connections
between SMTP servers over the Transport Security
Layer (TLS). The cipher suites, certificates and
certificate authority used, and the behavior of email
providers were considered when communicating with
improperly secured e-mail servers. Recently in 2016
[8], the author conducted a security analysis over the
SSL protocol. Due to lack of adequate cryptographic

mailto:p.fowdur@uom.ac.mu
mailto:muhammad.aumeeruddy3@umail.uom.ac.mu
mailto:y.beeharry@uom.ac.mu

Tulsi Pawan Fowdur, Muhammad Shafeeq Aumeeruddy, Yogesh Beeharry

14

encryption techniques, PKI infrastructure and digital
signature, intruders may have access to sensitive
information in an e-commerce environment. To avoid
MITM attack on the SSL protocol, front end
authentication, back end authentication and the
recognition of forged Certificate Authority were
proposed. In [9], the author focused on the possible
attacks on SSL over HTTP known as HTTPS protocol.
The most popular e-mail services and online
transactions rely mostly on HTTPS to provide end-to-
end security. The Diffie-Hellman and blowfish
algorithms were further added to enhance the SSL
over HTTPS. In [10], a description of the use of some
SMTP security extensions; STARTTLS, Sender
Policy Framework, DomainKeys Indentified Mail and
Domain Message Authentication Reporting and
Conformance for confidentiality of e-mail was given.
The STARTTLS extension encapsulates SMTP within
a TLS session. The client is able to transmit messages
and attachments over an encrypted path. The DKIM
allows the SMTP server to know whether an e-mail is
spoofed or not during transmission. SPF permits a
range of hosts that are authorized to send mail for its
domain. DMARC assembled on DKIM and SPF
enables senders to suggest a protocol for
authenticating the received mail. In [11], the author
used the technique of memory forensics to detect if a
client has received any spoofed e-mail. The memory
forensics approach also detects if a client has replied to
any spoofed e-mails. The memory on the client
machine is often analyzed on a scheduled basis to
check for spoofing attacks. If spoofing attacks are
detected, the log files stored on the memory may be
used by cybercrimes investigation for inspection. The
Identity-Based cryptography concept to secure e-mail
systems was introduced in [12]. The technique was
applied to three schemes: client encryption to third
party, mail server encryption before transmission and
industry private network SM9 encrypting alliance. The
three solutions were compared for reconstruction of a
secure e-mail system. In [13], the author discussed
about the confidential information being transferred
when carrying out e-commerce transactions. The
different threats to e-commerce applications and the
technologies used to counter them were discussed. In
[14], the authors designed a web-based client oriented
anti-spoofing mechanism to detect, monitor and
control e-mail spoofing. When a spoofed e-mail is
detected, an alert message is displayed. The authors
made us of the SSL protocol to counteract spoofing
attacks.

Although several works have shown the efficiency
of the SSL/TLS protocol, few have focused on its
implementation using the Java Secure Socket
Extension. The JSSE allows the implementation of
secure sockets for both servers and clients. Moreover
the JavaMail Application Programming Interface
allows flexibility in designing the e-mail applications
for testing security attacks. This paper provides a
detailed overview of the implementation of a secure e-
commerce and e-mail application using the TLS/SSL
protocols in Java. The application was tested with both
MITM and spoofing attacks. This paper is organized
in the following way: Section II gives an overview of
the SSL security mechanism and security attacks on e-

commerce and e-mail applications. Section III
describes the application of SSL to counteract security
attacks. Section IV describes the implementation and
testing of the developed application. Section V
concludes the paper.

II. OVERVIEW OF THE SSL SECURITY MECHANISM

AND SECURITY ATTACKS ASSOCIATED WITH E-

COMMERCE AND E-MAIL APPLICATIONS.

 The Secure Socket Layer (SSL) Protocol

predecessor of the Transport Layer Protocol (TLS)

was invented by Netscape in 1994 (Version 1.0) as a

solution to the increasing concerns over internet

security. The goal was to establish an encrypted path

between the client and the server platforms. In 2003,

Netscape additionally exploited new encryption plans,

by using the Advanced Encryption Standard (AES),

regarded as being more robust than the Data

Encryption Standard (DES) [15]. The AES was

chosen by the U.S government to protect classified

information and is said to suffice to serve the purpose

of protecting classified information up to the

SECRET level [16]. Updates have been made and

SSL version (3.0) is now operable on almost all web

servers and with its popularity, it has become a

standard. During the development of SSL version 3.0,

developers were also creating SSL certificates. The

genuineness of websites is approved by these

certificates.

The SSL protocol employs a series of

cryptographic processes to secure transmission of

data. It gives a secure improvement to the standard

TCP/IP sockets protocol used in Internet

communications. Figure 1 illustrates the location of

the SSL/TLS layer [17].

Figure 1. Location of SSL

The SSL/TLS protocol is used as a transport layer

security control. This layer ensures confidentiality

and integrity of data and peer authentication. The

goals of using the SSL protocol are that it is efficient

and utilizes a combination of cryptographic

procedures. The public key cryptography and secret

key are adopted to authenticate, and digital signatures

are made to provide privacy and data integrity [17].

E-commerce and e-mail applications are exposed

to different attacks. In this paper, emphasis is laid

upon Man-In-The-Middle attack and spoofing attack.

A MITM attack occurs when a third party in a

communication environment between two hosts

intercepts data in order to change it or modify it. The

two hosts believe they are communicating with each

other, while an attacker is intercepting all data in

Implementation of SSL/TLS-based security mechanisms in e-commerce and e-mail applications using Java

15

order to alter it or change it. The attacker may gain

important information like login credentials for a

website, important financial information or messages

exchanged between two parties [18]. Figure 2

illustrates the MITM attack.

Figure 2. MITM attack.

During an HTTP transaction between two hosts on

a network, there is a TCP connection. In a MITM

attack, the connection is split into two parts. The first

part leads the victim to the attacker, while the second

part leads the attacker to a server [19]. An

interception process is done before the user's network

traffic reaches its destination. It passes through the

attacker's network traffic. The most credulous way an

attacker does a passive MITM attack is by setting a

malicious Wi-Fi hotspot which is available to the

public. Once the victim connects to the hotspot, the

attacker gains full visibility to any online data

exchanged [20]. The main technique used to perform

MITM attack is sniffing of packets. Attackers use

packet capturing tools like Wireshark to carry out

such attacks. The sniffing tool is used to capture

confidential information on a network. Wireshark is a

free, commercial-quality sniffer program. It comes

with a GUI and runs on multiple platform: Windows,

Linux, Mac OS X. It can decode over 400 protocols.

Other examples of sniffing tools are: TCPDUMP,

Nmap and Cain and Abel [21, 22].

Spoofing attacks on e-mails occur when an

attacker sends a recipient an e-mail using another e-

mail address, that is, not the originating address. It is

possible to perform such an attack due to the SMTP

protocol. This type of attack happens when the

authentication process is not respected [23]. The

attacker manipulates the e-mail header (the 'From'

field) to make the e-mail appear legitimate [24].

The SSL/TLS protocol is employed to provide

security on web applications and e-mail applications.

On web applications, the security protocol is

combined with the HTTP protocol to provide secure

communication between users resulting in HTTP over

SSL/TLS which is the HTTPS protocol. The protocol

enables users to securely access and interact with their

online accounts, and protects, among other things,

common user authentication credentials, such as

passwords and cookies. In e-mail applications, the

TLS/SSL protocol is used to encrypt data being

transmitted and allows a client to authenticate with a

server [25].

III. IMPLEMENTATION OF E-COMMERCE

AND E-MAIL APPLICATION

This section gives details about the implementation of

the e-commerce and e-mail applications.

III.1 The E-Commerce Application

A GUI was designed for the HTTP and HTTPS

web server on the NetBeans IDE and is shown in

Figure 3.

Figure 3. Java Web Server Application

The "Start WebServer on port 800" button starts the

server on HTTP port 800 and the client will have

access to the unsecure web page. The "Start

WebServer with SSL on port 900" allows the

exchange of certificates between the server and client

hence providing secure connection. The exit button is

located on the top right upper corner to exit the

application. An overview of the methods

implemented for the application is given in Figures 4

and 5.

Figure 4. Java methods structure for HTTP server

Tulsi Pawan Fowdur, Muhammad Shafeeq Aumeeruddy, Yogesh Beeharry

16

Web

Server

GUI

Start

HTTP

Server

Start

Server

with SSL

EXIT

Keystore.

load()

TrustManagerFactory

.getInstance()

SSLserverSocket.

CreateSocket()

SSLserverSocket.

getSupportedCipherSuites()

SSLserver.

accept()

Figure 5. Java class structure for HTTPS server

Java methods structure for the HTTPS server

The start web browser button relies on several

methods to function. After a socket is created to

communicate, the Socket.accept() function is used to

listen to a connection to be made to this socket.

When a client connects to the socket, it accepts the

connection. The BufferedReader() is combined with

the InputStream() method to accept user input, for

example when a client is sending information to the

server. The BufferedReader() allows sending

characters instead of bytes. To send bytes to the

client, means the getOutputStream() method is used.

However, it can be combined with PrintWriter() to be

able to send text to a remote application. The

printWriter.print() will print the strings. Here this

method will output an HTML page to the web

browser of a client.

The start web brower with SSL shown in Figure 5

provides secure communication. Different methods

are used to obtain an SSL connection. The

keystore.load() function is used to access the server

and the client, certificated by using the

FileInputStream() method. The

Trustmanagerfactory.getInstance() method manages

the type of trust material used by the secure socket.

The SSLserverSocket.getSupportedCipherSuites()

method allows to choose the cipher suites to be used

by the server. It selects the strongest cipher suites to

be used by the server. The SSLserversocket.accept()

listens to the connection and accepts any trusted

incoming connection.

An HTML form was designed for the e-commerce

application where the user can input information as

shown in Figure 6. The form consists of three labels

and three input elements. The input elements are of

type text. The "text" creates a basic single-line text

field. The width for the input is of length 20

characters. A button of type submit is also included

and named "Buy Now". This button submits the data

to the server. The HTML form was written and tested

on a source code editor called Notepad++.

Figure 6. HTML form

After testing the form, it is embedded in the web

browser program. The Printwriter() method is

combined with the OutputStream() method to output

the HTML form to the client. To accept the user

input, a BufferedReader() is combined with an

InputStreamReader() to send data back to the server.

The flowchart shown in Figure 7 illustrates the

operation of the HTTP server application.

g

Figure 7. Flowchart for HTTP server

When the HTTP server is started, it waits for a client

to connect to it. If the client provides the correct port

number to connect, he will get access to the web page,

else the connection to the server is refused. When the

client is connected, the Printwriter() method will

output the HTML form on the client web browser.

When the client inputs details and submits the form,

Implementation of SSL/TLS-based security mechanisms in e-commerce and e-mail applications using Java

17

the Bufferedreader() method will send the data in the

form of text to the web server. Once the client has

finished, the socket is closed. The flowchart shown in

Figure 8 illustrates the operation of the HTTPS server

application.

Figure 8. Flowchart for HTTPS server

When the HTTPS server is started, it waits for a client

to connect to it on port 900. When a client connects to

it, the SSL handshake is started. The client sends the

server information about the SSL version it uses and

also a list of cipher suites. The server chooses the

highest version of SSL and the best cipher suite to be

used. The certificates are exchanged and the server

certifies the certificates. The secret keys are

exchanged and the client asks for a change in cipher

specification. In the next step, the server tells the

client to change the encrypted mode, the SSL

handshake is terminated and ready to send data

securely. The server and the client send data and

receive data using the same scheme as in the HTTP

server.

SSL/TLS needs to be implemented for secure

communication and is accomplished in several steps.

For the creation of certificates, a tool known as

keytool will be used. It is available in the JDK

software.

Four different certificates will be generated namely:

1. One keystore for the server

2. One keystore for the client

3. One truststore for the server

4. One truststore for the client

The keystore file contains the private keys and the

certificates with the corresponding public keys. The

creation for the keystore file for the server is shown in

Figure 9.

Figure 9. Keystore File for server

After that, a certificate file is created to be distributed

as public certificate to the client. This is shown in

Figure 10.

Figure 10. Server's public certificate

Keystore file for the client

The creation of the keystore file for the client is

shown in Figure 11.

Tulsi Pawan Fowdur, Muhammad Shafeeq Aumeeruddy, Yogesh Beeharry

18

Figure 11. Keystore File for client

After the creation of the keystore file for the client, a

certificate file is created, that may be distributed as

public certificate to the server and is illustrated in

Figure 12.

Figure 12. Client's public certificate

In order for a two-way Authentication, the Server

should recognize the client's public certificate and the

client should be aware of the server's certificate. This

is achieved by:

1. Adding the server certificate to the client's

truststore. This is shown in Figure 13.

Figure 13. Adding Server certificate to client truststore

2. The client certificate is added to the server

truststore. This is illustrated in Figure 14.

Figure 14. Adding client certificate to server's truststore.

The server's certificate is imported into the client's

local browser. This is achieved by:

1. The local browser is opened. Here Mozilla Firefox

was chosen. Navigate through the browser's option as

shown in Figure 15.

Figure 15. Browser's option button

Implementation of SSL/TLS-based security mechanisms in e-commerce and e-mail applications using Java

19

2. Click on options button and navigate through the

privacy and security and go to view certificates as

shown in Figure 16.

Figure 16. View Certificates button

3. After clicking on view certificates, select the

import button to view all available certificates. This is

shown in Figures 17 and 18.

Figure 17. Importing certificates

Figure 18. All available certificates listed

From Figure 18, all the listed certificates are shown

and the server certificate is selected.

III.2 The E-mail Application

The secure e-mail application was developed in Java

with the NetBeans IDE. The application is GUI-based

and is used to send and receive e-mails over an

SSL/TLS connection. The GUI for the complete

system is illustrated in Figure 19.

Figure 19. E-mail sender and receiver GUI

To send e-mails, the application makes use of the

Javamail API. Several steps are followed to send an e-

mail as follows:

1. The properties are placed for the session in a

properties object.

2. A mail session is started with the

Session.getInstance() method.

3. A message object is then created.

4. Set the message's From: address, To: address, and

subject.

5. Set the content of the message.

6. A transport is used from the session and is

connected to a named host using a username and

password.

7. The message is sent to recipients over the transport.

The properties define the host of the mail provider,

for example, if Gmail is being used, the host name

will be "smtp.gmail.com". It also provides the details

about the port number being used by the host and the

authentication mechanism. The option for selecting

the SSL/TLS connection also may be selected. The

session object is used to create a new message object

of type MimeMessage, since Internet e-mails are

being sent. The Multipurpose Internet Mail

Extensions is an Internet standard that uses the format

of an e-mail. After the message is created, the From

Tulsi Pawan Fowdur, Muhammad Shafeeq Aumeeruddy, Yogesh Beeharry

20

and To addresses are specified and the message

subject is written. The transport is used to send the

message to the recipient alongside with the send()

method which connects the mail server and sends the

message [26].

The application allows to send attachments also. To

send an attachment, means the application makes use

of a MimeMultipart object. The attachment is added

by the use of a Datahandler and is sent over the

transport [27].

The Javamail API allows e-mails to be received and

the procedures are as follows [27]:

 1. The properties are set up as before to be used for

the authentication

2. The authenticator is constructed to be used for

connection.

3. A session object is used with the

Session.getInstance() method.

4. The session's getStore() method is used to return a

store.

5. Connect to the store.

6. The INBOX folder from the store is retrieved with

the getFolder() method.

7. The INBOX folder is opened.

8. The messages are retrieved from the folder as an

array of message objects.

9. Close the folder and the store.

The authenticator class is used to ask a user for a

password and validates this password. The session

asks for a store from the provider, for example a

POP3 provider. The connect() method is used to

connect to the store using the hostname, username

and password. The folder is opened by using the

open() method and messages are available to read.

After reading the messages, the folder is closed using

the close() method [26].

Figure 20 illustrates the Java class structure for the e-

mail application.

Figure 20. Java class structure for e-mail application

The send() method allows the user to send an e-mail.

Different methods work together to provide this

service. Different fields for the properties method

need to be input; the hostname, the port number, use

of authentication and enabling TLS connection. The

session method authenticates with the e-mail

provider. Next, the message needs to be built up by

setting the From and To addresses as well as the

subject of the message. The mimebodypart is used to

send attachments.

The inbox allows a user to open and check his inbox.

The properties need to be specified and are used by

the authenticator class to connect to a store. A folder

is opened so as to retrieve the contents. The messages

Implementation of SSL/TLS-based security mechanisms in e-commerce and e-mail applications using Java

21

are retrieved by the multipart function where each

message is stored in an array of messages. After the

messages are retrieved, the folders and the store are

closed.

The system flowchart for sending e-mail is illustrated

in Figure 21.

Figure 21. System flowchart to send e-mail

When the program is started, the user inputs details

about username, passwords and composes the

message. If the startTLS command is enabled, the

TLS handshake is performed with the e-mail provider

and the message is sent encrypted. If the command is

not enabled, the message is sent in plain text to the

mail provider.

The system flowchart for receiving e-mail is shown in

Figure 22.

Figure 22. System flowchart for receiving e-mail

When the program is started, the user inputs details

about the port number, hostnames, user login and

password. If correct information is input, the user is

authenticated with the server and can have access to

his respective inbox.

IV. TESTING AND ANALYSIS

In this section, the operation of both e-commerce

and e-mail applications are illustrated and tested.

IV.1 E-Commerce Application Testing

 The HTTP server is enabled by clicking on the button

"start web server" as shown on the Figure 23.

Tulsi Pawan Fowdur, Muhammad Shafeeq Aumeeruddy, Yogesh Beeharry

22

Figure 23. GUI for e-commerce application

The user can access the web page by inserting the

following address in the browser: http://localhost:800.

Figure 24 illustrates the web page:

Figure 24. Accessing server in HTTP mode

The HTTPS server is started by clicking on the button

"start web server with SSL". The user can access the

web page by inserting the following link in the web

browser: https://localhost:900. Figure 25 displays the

web page when started on HTTPS.

Figure 25. Accessing server in HTTPS mode

TLS/SSL handshake is done with the server and the

encryption mode being used is shown in Figure 26:

Figure 26. HTTPS connection and encryption being used.

The Wireshark application allows a user to sniff

packets over a network. First sniffing is done over the

HTTP port and secondly on the HTTPS port. The

information is intercepted and shown respectively.

Figures 27 and 28 describe the information when the

network port was sniffed by Wireshark when a

transaction was done. It shows clearly that the data

are transmitted in plain text to the server. Anyone

using a packet sniffer program may intercept the data.

Figure 27: Information input by a client

Figure 28. Sniffing of client's information

From Figure 28, the program was able to sniff all the

information.

Implementation of SSL/TLS-based security mechanisms in e-commerce and e-mail applications using Java

23

The same information was used as for the HTTP

server and was input on the webpage of the HTTPS

server and the packets were sniffed and shown in

Figure 29.

Figure 29. Sniffing packets over HTTPS port

The program was able to sniff the port but the data is

encrypted and not sent in plain text.

IV.2 E-mail Application Testing

The e-mail application is tested next. The GUI for the

sender/receiver program, allows a user to send or

receive an e-mail easily. To send an e-mail, the

following steps are followed:

 1. The hostname should be specified, for example if

we are using G-mail, the hostname will be

smtp.gmail.com for sending e-mail. The port number

should be input. For g-mail, the port 587 is used to

send e-mail over a TLS connection. The starttls

extension may be set to either "true" or "false". This

allows us to upgrade our connection using SSL/TLS.

2. The username and password should be entered

correctly and set the destination e-mail address.

3. Add any attachment if necessary and type the

message and click on mail to send the message.

Figure 30 shows when an e-mail is sent using the G-

mail e-mail provider.

Figure 30. Sending an E-mail with javamail

After the e-mail is sent, a notification is sent to tell

the user the e-mail is sent successfully. Now using

the Wireshark packet sniffer, the data being sent are

sniffed and shown in Figure 31.

Figure 31. Wireshark capture on javamail

As shown in the Figure 31, a TLS handshake is

started at the client side and all the data being sent are

encrypted with the attachment also. Next the starttls

will be set to false and when an e-mail via G-mail is

sent, the output shown in Figure 32 is displayed.

Tulsi Pawan Fowdur, Muhammad Shafeeq Aumeeruddy, Yogesh Beeharry

24

Figure 32. Testing starttls false on gmail

As shown in Figure 32, the G-mail provider does not

accept insecure connections. The e-mail was not sent

and an error message is displayed. A TLS/SSL

handshake must be issued to connect to the e-mail

provider.

To receive an e-mail, the IMAP protocol is used to

retrieve e-mails from the folders. The following steps

are followed to open the e-mail:

1. Set the hostname, port number and starttls

command according to the e-mail provider being

used.

2. Input the username and password for correct

authentication.

3. Click on the inbox button to display the messages.

An example of the output is shown in Figure 33.

Figure 33. Inbox test

Next Wireshark is used to try to sniff packets when

receiving an e-mail.

Figure 34 shows an extract of the output from the

Wireshark software. It shows that the packets are

encrypted and the TLS protocol is being used. If an

attacker tries to sniff the packets, he will not be able

to decrypt any information.

Figure 34. Sniffing packets when receiving mail

As it can be seen from the previous testing, when the

G-mail provider was used, we can see that both

sending and receiving data are secured.

The application was also tested on an insecure e-mail

service. The SMTP2GO was selected as it provides

sending e-mails without the TLS protocol. The extract

from Wireshark is given in Figure 35 with the

startTLS command disabled while sending an email.

Figure 35. Disabling TLS on SMTP2GO

From Figure 35, the details are captured in plain text

when the startTLS command was disabled and all the

details such as the username and password were

obtained.

When an email was sent using the same SMTP2GO

e-mail service with TLS command enabled, the data

that were sniffed are shown in Figure 36, In this case

the data are encrypted.

Implementation of SSL/TLS-based security mechanisms in e-commerce and e-mail applications using Java

25

Figure 36. Testing SMTP2GO with TLS enabled

Spoofing attacks was tested with different email

providers, to see whether the application is able to

carry out spoofing attacks. Gmail and SMTP2GO

were used for testing the spoofing attacks as shown in

Figure 37.

1. Testing spoofing attack on G-mail.

Figure 37. Spoofing attack on G-mail

A spoofing attack was carried out using the G-

mail email provider. The 'From' field was changed to

'besd850494@gmail.com' as shown encircled in red

in Figure 36. The e-mail was sent successfully with

TLS set to true. Here the destination e-mail address is

'shafeeq.la123@gmail.com'. The next step, the inbox

of the correspondent e-mail address is checked and

shown in Figure 38.

Figure 38. Checking inbox on G-mail.

The receiver received the e-mail successfully but

the spoofed e-mail is immediately changed to the

originating e-mail address. This shows carrying out

spoofing attack on G-mail provider was unsuccessful.

2. Testing spoofing attack on SMTP2GO

A spoofing attack was carried out on SMTP2GO,

where the originating e-mail was changed as encircled

in red in Figure 39 and also TLS was disabled. The e-

mail was sent to 'besd.la@yahoo.com'. In the next

step, the inbox of the recipient will be checked to see

whether to see if the spoofed is received.

Figure 39. Spoofing Attack on SMTP2GO

Checking Spoofed E-mail on SMTP2GO.

The originating e-mail received the message

successfully and the attacked was not blocked when

Tulsi Pawan Fowdur, Muhammad Shafeeq Aumeeruddy, Yogesh Beeharry

26

not using TLS. This clearly illustrates the weakness of

not using SSL/TLS.

V. CONCLUSION

In this paper, an e-commerce and e-mail

application were implemented in Java with and

without the SSL/TLS protocol. For the e-commerce

application, both an HTTP and HTTPS server were

implemented. It was then shown how the HTTPS

server could mitigate a MITM attack performed by

Wireshark software. For the e-mail application, it was

shown that secure e-mail providers like G-mail could

easily prevent MITM and spoofing attack by using

SSL/TLS. However, with some e-mail services such

as SMTP2GO, it was possible to perform MITM and

spoofing attacks. Spoofing attacks were tested in

different e-mail providers and the TLS protocol

successfully blocked sending spoofed emails on G-

mail. While the relay service SMTP2GO could not

mitigate the spoofing attack when the TLS protocol

was not used. This paper therefore has provided a

framework for testing the security of e-commerce and

e-mail application by the use of Java, with relevant

implementation details.

ACKNOWLEDGMENT

The authors would like to acknowledge the

financial support of the University of Mauritius.

REFERENCES

[1] Anon. 2018. What is Ecommerce?. [ONLINE] Available at:

http://www.networksolutions.com/education/what-is-ecommerce/.

[Accessed 22 February 2018].

[2] The RADICATI group, 2017-2021, Email Statistics Report.

[3] Statista. 2018. • Global retail e-commerce sales 2014-2021 |

Statistic. [ONLINE] Available at:

https://www.statista.com/statistics/379046/worldwide-retail-e-

commerce-sales/. [Accessed 03 April 2018].

[4] U.S. 2018. Hackers attack 20 million accounts on Alibaba's

Taobao shopping site | Reuters. [ONLINE] Available at:

https://www.reuters.com/article/us-alibaba-cyber/hackers-attack-

20-million-accounts-on-alibabas-taobao-shopping-site-

idUSKCN0VD14X. [Accessed 22 February 2018].

[5] SearchSecurity. 2018. The importance of email encryption

software in the enterprise. [ONLINE] Available at:

http://searchsecurity.techtarget.com/feature/The-importance-of-

email-encryption-software-in-the-enterprise.

[Accessed 25 February 2018].

[6] Er, P.K. and Er, G.K., 2017. Review of Role of SSL in Cyber

Security. International Journal of Advanced Research in Computer

Science, 8(4).

[7] Baumgäertner, L., Höchst, J., Leinweber, M. and Freisleben, B.,

2015, August. How to Misuse SMTP over TLS: A Study of the (In)

Security of Email Server Communication.

In Trustcom/BigDataSE/ISPA, 2015 IEEE (Vol. 1, pp. 287-294).

IEEE.

[8] Arshad, M. and Hussain, M.A., 2016. Secure Framework to

Mitigate Man-in-the-Middle Attack over SSL Protocol. Indian

Journal of Science and Technology, 9(47).

[9] Shubh, T. and Sharma, S., 2016. Man-In-The-Middle-Attack

Prevention Using HTTPS and SSL.

[10] Durumeric, Z., Adrian, D., Mirian, A., Kasten, J., Bursztein,

E., Lidzborski, N., Thomas, K., Eranti, V., Bailey, M. and

Halderman, J.A., 2015, October. Neither snow nor rain nor

MITM...: An empirical analysis of email delivery security.

In Proceedings of the 2015 Internet Measurement Conference(pp.

27-39). ACM

[11] Iyer, R.P., Atrey, P.K., Varshney, G. and Misra, M., 2017,

October. Email spoofing detection using volatile memory forensics.

In Communications and Network Security (CNS), 2017 IEEE

Conference on (pp. 619-625). IEEE.

[12] Xuan, J., Wang, D., Li, Z. and Zhang, S., 2016, October.

Design of secure and independent controllable email system based

on Identity-Based Cryptography. In Computer and

Communications (ICCC), 2016 2nd IEEE International Conference

on (pp. 217-222). IEEE.

[13] Hussain, M.A., 2013. A study of information security in e-

commerce applications. International Journal of Computer

Engineering Science (IJCES), 3(3), pp.1-9.

 [14] Fowdur, T.P. and Veerasoo, L., 2016, January. An email

application with active spoof monitoring and control. In Computer

Communication and Informatics (ICCCI), 2016 International

Conference on (pp. 1-6). IEEE.

[15] History of SSL Certificate | When was SSL Certificate

Introduced. 2018. History of SSL Certificate | When was SSL

Certificate Introduced. [ONLINE] Available at:

https://www.evsslcertificate.com/ssl/ssl-history.html. [Accessed 28

February 2018].

[16] SearchSecurity. 2018. What is Advanced Encryption Standard

(AES)? - Definition from WhatIs.com. [ONLINE] Available at:

http://searchsecurity.techtarget.com/definition/Advanced-

Encryption-Standard. [Accessed 28 February 2018].

[17] IBM Knowledge Center. 2018. IBM Knowledge Center.

[ONLINE] Available at:

https://www.ibm.com/support/knowledgecenter/en/SSYKE2_7.1.0/

com.ibm.java.security.component.71.doc/security-

component/jsse2Docs/ssloverview.html.

[Accessed 17 March 2018].

[18] Andrew Peterson. 2018. The myth of the sophisticated hack -

O'Reilly Media. [ONLINE] Available at:

https://www.oreilly.com/learning/the-myth-of-the-sophisticated-

hack?log-out. [Accessed 07 April 2018].

[19] Techopedia.com. 2018. What is a Man-in-the-Middle Attack

(MITM)? - Definition from Techopedia. [ONLINE] Available at:

https://www.techopedia.com/definition/4018/man-in-the-middle-

attack-mitm. [Accessed 14 March 2018].

[20] Incapsula Team. 2018. MAN IN THE MIDDLE (MITM)

ATTACK. [ONLINE] Available at:

https://www.incapsula.com/web-application-security/man-in-the-

middle-mitm.html. [Accessed 14 March 2018].

[21] Orebaugh, A., Ramirez, G. and Beale, J., 2006. Wireshark &

Ethereal network protocol analyzer toolkit. Elsevier.

[22] Kaur, I., Kaur, H. and Singh, E.G., 2014. Analysing Various

Packet Sniffing Tools. International Journal of Electrical

Electronics & Computer Science Engineering, 1(5).

[23] Gupta, S., Singhal, A. and Kapoor, A., 2016, April. A

literature survey on social engineering attacks: Phishing attack.

In Computing, Communication and Automation (ICCCA), 2016

International Conference on (pp. 537-540). IEEE.

[24] Derouet, E., 2016. Fighting phishing and securing data with

email authentication. Computer Fraud & Security, 2016(10), pp.5-

8.

[25] IBM Knowledge Center Error. 2018. IBM Knowledge Center

Error. [ONLINE] Available at:

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0

/com.ibm.zos.v2r1.gska100/csdcwh.htm. [Accessed 21 March

2018].

[26] Harold, E.R., 2013. JavaMail API: Sending and Receiving

Email with Java. " O'Reilly Media, Inc.".

[27] tutorialspoint.com. 2018. JavaMail API - Core Classes.

[ONLINE] Available at:

https://www.tutorialspoint.com/javamail_api/javamail_api_core_cl

asses.htm. [Accessed 18 March 2018].

http://www.networksolutions.com/education/what-is-ecommerce/
https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
https://www.statista.com/statistics/379046/worldwide-retail-e-commerce-sales/
https://www.reuters.com/article/us-alibaba-cyber/hackers-attack-20-million-accounts-on-alibabas-taobao-shopping-site-idUSKCN0VD14X
https://www.reuters.com/article/us-alibaba-cyber/hackers-attack-20-million-accounts-on-alibabas-taobao-shopping-site-idUSKCN0VD14X
https://www.reuters.com/article/us-alibaba-cyber/hackers-attack-20-million-accounts-on-alibabas-taobao-shopping-site-idUSKCN0VD14X
http://searchsecurity.techtarget.com/feature/The-importance-of-email-encryption-software-in-the-enterprise
http://searchsecurity.techtarget.com/feature/The-importance-of-email-encryption-software-in-the-enterprise
https://www.evsslcertificate.com/ssl/ssl-history.html
http://searchsecurity.techtarget.com/definition/Advanced-Encryption-Standard
http://searchsecurity.techtarget.com/definition/Advanced-Encryption-Standard
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_7.1.0/com.ibm.java.security.component.71.doc/security-component/jsse2Docs/ssloverview.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_7.1.0/com.ibm.java.security.component.71.doc/security-component/jsse2Docs/ssloverview.html
https://www.ibm.com/support/knowledgecenter/en/SSYKE2_7.1.0/com.ibm.java.security.component.71.doc/security-component/jsse2Docs/ssloverview.html
https://www.oreilly.com/learning/the-myth-of-the-sophisticated-hack?log-out
https://www.oreilly.com/learning/the-myth-of-the-sophisticated-hack?log-out
https://www.techopedia.com/definition/4018/man-in-the-middle-attack-mitm
https://www.techopedia.com/definition/4018/man-in-the-middle-attack-mitm
https://www.incapsula.com/web-application-security/man-in-the-middle-mitm.html
https://www.incapsula.com/web-application-security/man-in-the-middle-mitm.html
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.gska100/csdcwh.htm
https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.gska100/csdcwh.htm
https://www.tutorialspoint.com/javamail_api/javamail_api_core_classes.htm
https://www.tutorialspoint.com/javamail_api/javamail_api_core_classes.htm

