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Abstract – The purpose of this paper is to review the 

signal processing and analysis methods applied in 

nuclear quadrupole resonance (NQR) spectroscopy. 

NQR is a radio frequency spectroscopic technique used 

for detecting solid state compounds containing 

quadrupolar nuclei, in applications ranging from 

chemical analysis to explosive and drugs detection. This 

paper presents the principle of NQR, its applications, 

the detection methods and an overview of the research 

done in the field of signal processing and analysis using 

this technique. Different solutions are described, 

starting from the techniques developed initially up to 

state-of-the-art detection algorithms. These are 

presented in chronological order, also discussing their 

principles, advantages and disadvantages. This paper 

proposes several directions for future research and 

suggests machine learning as a next step in NQR signal 

analysis. 
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analysis; detection algorithm;machine learning 

I.  INTRODUCTION 

Nuclear quadrupole resonance (NQR) is a solid-
state radio frequency (RF) spectroscopy technique 
used in chemical analysis. It was first observed in 
1949, by H. Dehmelt and H. Krüger [1] and is similar 
to nuclear magnetic resonance (NMR), with the 
difference that it does not require an external magnetic 
field. For this reason, NQR is also called zero-field 
NMR. 

NQR is manifested in powder or crystalline 
substances made out of atoms with quadrupolar nuclei, 
i.e. with spin number at least ½. By having a non-
spherical electrical charge distribution, these atoms 
exhibit an electric quadrupole moment which can 
interact with an external electric-field gradient to 
create distinct energy states. There are many isotopes 
that possess quadrupole moments, such as: 

14
N, 

35
Cl, 

17
O, 

27
Al etc. Substances that contain these isotopes 

can be analyzed using NQR spectroscopy, which 
opens up this technique to a range of applications. 
Since many explosive and drugs contain the isotope 
14

N, one of its most appealing applications is the 
detection of dangerous and contraband substances. 
NQR is very sensitive to the electron distribution and 
molecular structure (chemical environment), thus 
allowing for very precise measurements. There are 
over 10000 substances investigated up to this date 

using NQR spectroscopy and no two substances have 
been found with the same resonance frequency [2]. 

One of the characteristics of NQR is that the 
substance response signal is very weak, with 
magnitude order of tens of nV, comparable with the 
probe’s thermal noise level, thus being very 
susceptible to radio frequency interference and 
spurious signals such as piezoelectric and magneto-
acoustic responses. As a result, the detection and 
signal processing methods focus on differentiating the 
useful signal from environmental and electronic noise, 
as well as maximizing the substance response signal. 

The detection methods applied in NQR range from 
direct (pure) detection, including continuous-wave, 
superregenerative and pulsed methods, to indirect 
detection using double resonance, cross-relaxation, 
polarization and superconducting quantum 
interference device (SQUID). Depending on the 
volume of the object analyzed, which can be a 
laboratory probe, a parcel or even a luggage, the 
substance analyzed and measurement conditions, these 
employ excitation powers ranging from mW to kW. 
Special care is taken to switch from high power 
emission (excitation) to very low signal reception 
(detection). 

The signal processing methods used in NQR aim 
to increase the signal-to-noise ratio (SNR). They imply 
pre-processing techniques to improve the extremely 
weak raw signal, i.e. the signal response, quadrature 
detection technique, adaptive cancellation algorithms 
to reduce the background noise, matched filters, 
spectral estimation and even neural networks. These 
will be detailed in the following chapters. 

II. NQR PRINCIPLE AND APPLICATIONS 

Nuclear quadrupole resonance appears in 
substances made out of atoms with quadrupolar nuclei. 
This means that they possess an electric quadrupole 
moment (Q) which is a measure of the charge 
distribution deviation from spherical symmetry. NQR 
is similar to NMR, with the difference that NMR 
exploits the interaction of the nuclear magnetic 
moment and external magnetic field, whereas NQR 
uses the interaction between Q and the electric-field 
gradient (EFG) surrounding the nucleus [4]. As a 
result, NQR does not need an external magnetic field 
and is also called zero-field NMR. 
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The electric moment appears in nuclei with spin 
number at least ½. Figure 1.  shows the sign of Q 
depending on the charge distribution in the nucleus. 

 

Figure 1.   Electric quadrupole moment sign based on the charge 

distribution in the nucleus [3] 

In the figure above, zn is the axis of symmetry of 
the nucleus (spin), and rn is the direction perpendicular 
to zn. The electric quadrupole moment can interact 
with an external EFG to create distinct energy states. 
Transitions among the various states can be excited by 
RF pulses whose frequency matches the energy 
difference between two different states. Three possible 
transitions between the energy states are possible, 
corresponding to three NQR resonant frequencies, 
denoted ν0, ν- and ν+ [4]. As a result, NQR can be 
defined as a process of RF resonance, consisting in 
absorption and emission of electromagnetic energy. In 
gaseous and liquid phases, these transitions become 
averaged to zero, so NQR can only be used on solids 
(including powders, crystals). 

There are many isotopes that possess quadrupole 
moments, such as: 

14
N, 

35
Cl, 

63
Cu, 

65
Cu, 

17
O, 

59
Co, 

47
Ti, 

49
Ti, 

55
Mn, 

27
Al, 

115
I, 

71
Ga etc. Substances which 

contain these isotopes can be analyzed using NQR 
spectroscopy. 

The resonance frequencies are very sensitive to the 
electron distribution and molecular structure (chemical 
environment), allowing for very precise 
measurements. There are over 10000 substances 
investigated up to this date and each has been found 
with unique resonance frequencies [2] (RF 
“fingerprints”). In case of complex substances which 
have multiple molecules on the crystal lattice, each 
molecule with its own resonant frequency, these can 
respond to more than 3 frequencies. E.g., TNT has 
over 30 resonance frequencies [4]. However, the 
resonant frequencies are highly dependent on 
temperature. 

The NQR response signal is generated by the spin 
precession of the nuclei after excitation with an RF 
signal. Figure 2.  illustrates the NQR signal excitation. 

  

Figure 2.   NQR excitation [4] 

 

The excitation signal is usually a high-power pulse 
sequence which drives a coil surrounding the 

substance measured. This generates a magnetic field 
that tilts the spins of the nuclei. When reverting to 
equilibrium, these emit a decaying signal, also known 
as free induction decay (FID), which can be captured 
by the same coil. The excitation and FID signal are 
illustrated in Figure 3.  

Figure 3.   FID signal [4] 

The time required to return to equilibrium, also 
called spin–lattice relaxation time, is denoted T1 and 
ranges from ms to tens of s. The time constant for FID 
decaying is T2 and its effective value, T

*
2, ranges from 

µs to ms. In order to obtain a stronger response, most 
excitation sequences focus on generating echo signals, 
which appear on excitation with successive pulses of 
different durations. The echo train decay time, also 
called spin–spin relaxation time, is denoted T2 and its 
effective value, T2e, ranges from tens of ms to several 
s, being longer than T

*
2. These parameters, along with 

the excitation power, have to be taken seriously into 
consideration when choosing the detection technique 
and are specific for each substance. 

Due to its high specificity, one of the most 
important applications of NQR is chemical analysis. 
Since many explosive and drugs contain the isotope 
14

N, another application is the detection of dangerous 
and contraband substances (baggage scanning, 
landmine detection). Other applications domains 
include: pharmaceutical analysis [5], mineral analysis, 
oil drilling and geothermal heat drilling, temperature 
measurement [6]. 

III. NQR DETECTION METHODS 

There are several excitation methods used to obtain 
an NQR response signal from the substance 
investigated. All of them consist in emitting 
electromagnetic energy towards the substance, which 
can be a pulse sequence or continuous wave. 

A. Direct Detection 

The first method is called direct or pure detection 
and is further subdivided in: oscillator-based and 
pulse-based detection. The first involves the use of a 
marginal oscillator which shows decreasing amplitude 
of oscillations when the frequency matches the NQR 
resonance frequency of the substance (continuous 
wave – CW – detection). A super-regenerative 
oscillator (SRO) can be used in order to obtain greater 
sensitivity and because their simpler construction. 
Basically, in this case the substance response is added 
to the voltage level of the oscillations, indicating the 
resonance frequency. One form of CW detection uses 
low-power stimulated emission and is based on CW 
radar techniques [8]. 
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Pulsed-based methods are widely used, because 
they permit better sensitivity [6]. They consist in 
emitting a train of impulses and summing the FID 
response after each pulse. SNR is directly proportional 
with the square root of the number of pulses (scans), 
and the time between scans is at least T1. Sensitivity is 
increased and scan time is reduced by the use of multi-
pulse sequences, initially developed for NMR. These 
are divided in: spin-locking multi-pulse (SLMP) 
sequences (also called spin-locked spin echo – SLSE) 
and steady-state free precession (SSFP). 

SLSE sequences imply excitation of the substance 
before returning to equilibrium, producing echo 
signals (spin echo). These sequences are expressed as: 

 θφ1 ‒ (τ ‒ θφ2 ‒ τ) N, (1) 

where τ is half of the pulse repetition time, φ1 is the 
first (or preparatory) pulse phase, φ2 is the phase of the 
other pulses, θ is the rotation angle of the spins 
(directly related with pulse duration), and N is the scan 
number (number of pulses in the sequence). 

Figure 4.  illustrates a SLSE sequence.  

 

Figure 4.   SLSE sequence [3] 

These types of sequences are adequate for 
substances with T1 greater than the detection time. 

SSFP sequences use equally spaced pulses and 
with the same duration to maintain the substance in a 
steady-state (different from equilibrium), thus 
responding with a continuous signal of varying 
amplitude. These are adequate for substances with 
short T1. SSFP sequences are expressed as:  

 (τ ‒ θφ ‒ τ) N, (2) 

where φ is the first (or preparatory) pulse phase. 

The parameters of multipulse techniques (i.e. τ, θ, 
N) need to be fined tuned for each substance type in 
order to obtain maximum response. Also, there are 
many variations of these multipulse sequences that are 
developed for specific types of substances and 
applications: SE, CP, CPMG, QCPMG, WURST-
QCPMG, PAPS, NPAPS, SORC etc. Pulse sequences 
have even been developed to reduce spurious signals, 
such as piezoelectric and magneto-acoustic responses 
[7]. 

B. Indirect Detection 

The second method is indirect detection and is 
used to complement the first technique for substances 
with low intensity response, especially if the resonance 
frequency is below 1 MHz. This is subdivided in: 

double resonance, cross-relaxation, polarization and 
superconducting quantum interference device 
(SQUID). 

Double resonance is used on substances with two 
types of nuclei, one of them having a strong response. 
It focuses on detecting the weak response when 
observing changes in the stronger one. Cross-
relaxation is similar to double resonance method, but 
further applies an external DC magnetic field. The 
polarization method uses an external static magnetic 
field before applying the excitation sequence, in order 
to maximize the response. The use of superconducting 
quantum interference device (SQUID) based 
amplifiers permits detection of weak responses at low 
frequencies but requires special equipment. 

IV. NQR SIGNAL PROCESSING AND ANALYSIS 

METHODS 

There are many signal processing techniques 
proposed over time and these can be classified into 
several categories: classical NQR (cNQR), stochastic 
NQR (sNQR), single sensor, multi-sensor, pre-
processing, post-processing, CW NQR, pulsed NQR. 
cNQR techniques process the signal obtained using 
high power RF pulses, whereas sNQR process the 
signal resulting from trains of low power pulses with 
randomized phases and amplitudes [9]. Single sensor 
algorithms focus on systems with one transmission-
reception coil/antenna, whereas multi-sensor 
techniques are used in detectors based on spatial 
diversity (multi-channel detection using multiple 
antennas for better interference rejection) [10]. Pre-
processing techniques aim to improve the signal as it 
is acquired, while post-processing methods work with 
signal obtained after pre-processing. CW and pulsed 
NQR methods focus on the signal obtained using these 
two methods, respectively. For clarity in presenting 
the signal processing techniques, these will be divided 
in pre- and post-processing methods. 

A. Pre-Processing Methods 

The main disadvantage of NQR is the very low 
SNR. Consequently, the challenges for NQR signal 
processing methods are to reduce RFI (due to radio 
transmissions and electronic devices) and to extract 
the substance response from noise [13]. 

Basically, in either CW or pulsed NQR, the 
response signal is digitized using an ADC and then 
processed. The signal can be detected using the known 
NQR resonance frequency (quadrature detection 
approach) or can be acquired as is (raw signal 
approach). 

The first solution to improve the extremely weak 
signal is to use a pre-processing technique called 
signal averaging. It consists in summing every 
response signal, composed of the actual NQR signal 
plus noise. The substance response adds coherently, 
while the noise is reduced. The SNR increases 
proportionally with the square root of the number of 
excitation pulses. The disadvantage of this method is 
that it can require a large number of scans to increase 
SNR to a detectable level, which leads to an 
unacceptable long scanning time for substances with 
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relatively large T1. This is due to the fact that one 
needs to wait up to 5T1 between scans for the 
substance to properly return to equilibrium state 
(reaching full relaxation) [3]. 

The quadrature detection approach is another pre-
processing solution which was initially utilized in 
NMR, using two receiver coils. It has the advantages 
of increasing SNR with the square root of 2 [12] and 
allowing to observe the response’s frequency 
deviation. It is illustrated in Figure 5.  

 

Figure 5.   Quadrature detection [11] 

Quadrature detection takes the substance response 
signal (FID or spin-echo) and mixes it with the 
receiver sine and cosine waveforms to create the real 
and imaginary data which, after low pass filtering, 
become the I and Q channels. After phase detection, 
these can be further passed to a signal averaging block. 
When processed using fast-Fourier transform (FFT) 
these allow one to distinguish the negative and 
positive frequencies relative to the carrier frequency, 
i.e. the frequency deviation of the substance response 
relative to the excitation frequency. However, if only 
one coil is used, the SNR remains the same [12]. 

SNR is further improved by using multi-pulse 
sequences together with better post-processing signal 
detection techniques.  

In [4], RFI is mitigated using a custom designed 
analog domain adaptive filter, with a new weight-
updating circuit with DC offset cancellation. This is 
used together with a digital signal processing platform. 

B. Post-Processing Methods 

As previously mentioned, the NQR response 
amplitude strongly depends on the excitation sequence 
parameters (amplitude, frequency – also dependent on 
sample temperature – duration and repetition rate) 
which need to be fined tuned for each type of 
substance in order to achieve an optimal signal. This 
can be a time-consuming task, especially if no data is 
available for the substance analyzed. This situation is 
addressed in [14] where a feedback control algorithm 
is used to adjust in real-time the excitation pulse 
parameters, i.e. width and offset frequency to increase 
the SNR and probability of detection (Pd). This 
method is also useful in experiments where noise is 
correlated or when averaging limited data. 

The same algorithm is proposed in [15] for 
detecting buried mines. A strong off-resonant comb 
sequence (SORC) is used for excitation and the 
algorithm automatically optimizes the pulse width by 
adjusting a performance index. This is represented by 

the peak-to-peak value of the average of N responses 
obtained with a fixed pulse width. It is maximized 
using the gradient method of steepest ascent [15]. 

 In [16] an energy detector is used, which 
converts the received signal to frequency domain and 
checks if the power of the frequency of interest 
exceeds a predefined threshold [13]. Several detection 
algorithms based on power spectrum estimation are 
investigated. In particular, discrete Fourier transform 
(DFT), the periodogram, an autoregressive (AR) 
algorithm using four different approaches (Yule-
Walker, covariance, Burg and modified covariance), 
and also, the MUSIC spectral estimator. However, 
these methods are adequate only for high SNR [13]. 

 Tantum et al. have proposed the use of a 
Bayesian algorithm to improve the very low SNR in 
case of TNT landmine detection and an adaptive noise 
cancellation algorithm (ANC) for RFI mitigation [17]. 
The Bayesian approach uses statistical data of the 
substance response and noise, and takes the decision 
based on a likelihood ratio. However, it requires 
previous knowledge of mean and covariance of the 
data in both hypotheses (mine present and mine 
absent), which is acquired using 50 training sets [17]. 
The ANC is done using a 2-tap normalized least mean 
squares (NLMS) filter and the noise is captured using 
one or more antennas. Filtering is done in the 
frequency domain. The Bayesian detector processes 
the output of the adaptive filter. The disadvantage of 
this method is that it cannot adapt to environment 
changes which result in nonstationary noise statistics. 
Also, it can amplify the white noise and it may suffer 
from signal cancellation due to minimizing the total 
output power [22]. 

 In [18], Tan et al. present TNT landmine 
detection using the LMS algorithm to reduce RFI and 
a power spectral estimation technique to identify the 
response peak. Figure 6.  shows the adaptive noise 
canceller diagram.  

 

Figure 6.   Adaptive noise canceller in NQR detection [18] 

The main antenna captures the NQR signal plus 
interference and a secondary antenna is used to collect 
the interference that correlates with the noise captured 
by the main probe. These are subtracted in frequency 
domain using a 1-tap LMS filter, obtaining more than 
50 dB interference attenuation [18]. MUSIC and 
periodogram algorithms are used to detect the NQR 
response. The first is shown to achieve better results 
than the latter.  
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The previous works assume that the noise has a 
white Gaussian distribution. Tan et al. take a step 
further in [19], by considering the RFI to have a non-
Gaussian colored distribution, which is unavoidable in 
field conditions. They propose the Cramer–Rao lower 
bound for estimating the NQR signal based on the 
statistical model of RFI. 

The same authors propose in [20] the use of a 
Kalman filter to detect the presence of the substance 
response in the post-RFI mitigation signal. They 
investigate a two-step adaptive Kalman filter on 
simulated and real data, in both direct estimation (i.e., 
the system state is represented by the NQR signal to be 
estimated), and also in indirect estimation 
configurations (i.e., the system state is the equal to the 
background noise and the response is considered the 
observation noise). In case of direct estimation, several 
filters are investigated. Figure 7.  shows the direct 
estimation results achieved for simulated data in all 
configurations investigated: without filter (pre KF), 
with conventional filter (post conKF), with filter for 
colored noise (post arbKF) and with filter having an 
autoregressive model for colored noise (post extKF). 
The model variance is indicated by Q and is the same 
for all traces. As seen in the plot, the best performance 
is achieved using the latter filter. The drawback of this 
method is that it requires training data for estimating 
the coefficient and covariance matrices [20], which 
may not be available in real application.  

 

Figure 7.   Direct Kalman estimation results [20] 

 

In [21], Liu et al. suggest exploiting both the 
spatial and temporal correlations of the RFI in order to 
improve detection of TNT landmines. The RFI is 
captured using a secondary antenna array. They 
propose several methods for RFI suppression, such as: 
alternating least squares (ALS) and doubly constrained 
robust Capon beamformer (DCRCB). 

In [22] several detection algorithms are 
investigated. For single sensor applications, robust 
generalized Capon (RGC) and approximate robust 
RGC are found better than non-adaptive least-squares 
(LS) method. For multi-sensor applications, several 
adaptive beamforming methods are proposed to 
mitigate the RFI. 

Stegenga investigates in [23], the matched filter 
(MF), maximum entropy (ME) and Bayesian methods. 
The latter is found to be the most robust against noise, 
but it requires a priori information. The maximum 
entropy method is observed to be the most 
computationally intensive. 

NQR has the drawback that the substance response 
frequency is strongly dependent on its temperature. 
Jakobsson et al. propose an approximate maximum 
likelihood (AML) to exploit this dependency as a way 
to enhance the SNR [24]. Basically, this algorithm 
matches the measured spectral lines (whose 
temperature dependence is known) with the estimated 
model data, evaluating the peak corresponding to the 
temperature that gives the best match. However, it 
requires an estimated noise model which is obtained 
using a nonlinear least squares method. 

In [25], the authors extend the previously presented 
algorithm to a frequency selective AML detector 
(FSAML). It has the advantages that it works with a 
subset of the available frequencies, making it more 
robust to narrow-band RFI, and is less computationally 
intensive. 

As previously mentioned, in order to increase 
SNR, the data captured after each excitation pulse is 
averaged. Somasundaram et al. propose in [26] that the 
individual received responses be processed as a 
sequence, instead of averaging them, thus exploiting 
the decaying characteristic of each spin echo. Hence, 
the raw signal train without averaging is utilized. The 
echo train variants, ETAML and FETAML, of the 
previous algorithms are investigated for TNT 
detection. The authors report increased Pd, even in 
cases where the sample temperature is unknown. 

In [27], Somasundaram et al. approach stochastic 
NQR detection, by introducing a new data model and 
investigating two detection schemes. According to 
[10], “in sNQR, only a very small amount of the data 
contains the FID, the rest can be considered secondary 
data; in cNQR, secondary data can be acquired by 
continuing the measurement after the pulsing has 
ceased. This information is used to construct an 
interference subspace, to which the signal is then 
projected orthogonally, removing the RFI 
components.” In [27], the projection algorithm used is 
called Subspace-based EvaluAtion of Quadrupole 
resonance signals Exploiting Robust methods 
(SEAQUER), which has the limitation that it does not 
perform well on a mixed response (e.g., generated by 
different polymorphic forms of the same substance) 
[10]. The other algorithm investigated in [27] is robust 
correlation domain approximate maximum likelihood 
(RCDAML), which uses the correlation domain 
samples known not to contain NQR components, 
denoted signal-of-interest (SOI) free samples, “to 
obtain an estimate of the noise covariance matrix, and 
then use this to prewhiten any unknown noise 
coloring” [27]. Prewhitening is used to filter out 
background noise from NQR data [40]. 

Butt et al. address the problem of processing NQR 
signals from mixtures. In [28], they investigate several 
algorithms: alternating least squares (ALS), model-
mismatched maximum likelihood (M

3
L), nonlinear 



 6 Cristian Monea 

least squares (NLS) detector, frequency-selective 
multichannel (FSMC) method and exploiting spatial 
diversity and polymorphism in robust estimation 
algorithm (ESPIRE). Since the other algorithms 
required that the relative amplitude of the spectral 
lines is known a priori, ESPIRE is proposed as a 
solution to provide robustness to uncertainties in the 
assumed amplitudes, which is the case in real 
applications.  

This line of research is continued in [29], where 
they improve the methods to be more robust against 
uncertain amplitudes. The least squares ETAML 
(LSETAML) and robust (or constrained least squares) 
ETAML (RETAML) detectors are proposed, as well 
as their frequency selective versions (FLSETAML and 
FRETAML). LSETAML has the advantage that it 
does not require a priori information, but this can be a 
drawback if uncertainty is low. RETAML, however, 
requires a priori information. Their frequency selective 
versions offer the advantages of being less 
computationally intensive and having better results. 

Jakobsson and Butt also propose, in [35], an 
improvement for the ESPIRE algorithm, considering 
that it does not perform well in the presence of 
temporally correlated noise. The new algorithm, called 
noise and RFI removal for detection in QR 
applications (NORRDIQ), cancels temporally 
correlated interference from the data before ML 
estimates are calculated. 

They propose in [30], that the noise and SOI 
samples be captured sequentially, using the same 
cNQR excitation sequence. Thus, two scans are 
needed, in the presence and absence of the sample, 
respectively. The SOI data set contains the sample 
response plus noise, whereas the other data set 
(acquired either before or after capturing the SOI 
data), contains only the noise.  The noise-only data is 
then subtracted from the SOI data to remove RFI. 
However, this solution cannot be used in applications 
where long scanning time is not acceptable. 

Niu et al. propose in [34], a generalized matched 
filter approach to enhance detection. An 
autoregressive method is utilized for estimating the 
power spectrum of background noise and a 
generalized matched filter, formed by combining a 
prewhitening filter with a matched filter, is used for 
detection. 

Gudmundson et al. have developed an ESPRIT-
based estimator, together with the corresponding 
Cramer-Rao lower bound, for spin echoes resulting in 
SLMP experiments [36]. 

A signal processing solution for CW 
measurements is presented in [44]. It proposes a phase 
altering operation to remove artifacts of phase 
differences in the reference. Also, the mean value of 
the signal in case sample absence is subtracted from 
the mean value of the signal in case of sample 
presence. 

In [33], Swärd and Jakobsson proposes the 
algorithm called Estimation of Phase and amplitude 
for Interference Cancellation (EPIC).  It estimates the 
stationary RFI components present in both primary 

(that includes SOI) and secondary data sets (noise-
only). This has the advantage that it can also be used 
in cases when the interference is overlapping the SOI. 

A single sensor algorithm for cancelling strong 
stationary and non-stationary interference in landmine 
detection has been developed in [37]. The interference 
cancelation AML (ICAML) method estimates the 
entire RFI data using Fourier and wavelet analysis. 
Compared with the frequency selective algorithm 
presented before, this technique can also reduce noise 
overlapping the SOI. 

Mozzhukhin et al. utilize in [38], the continuous 
wavelet transformation on the response signal and a 
pattern (reference) signal constructed from known 
parameters (relaxation values, line width and 
waveform). The mutual wavelet spectrum is 
determined and used for detecting the presence of the 
NQR response. 

In [39], a multi-sensor (or multi-channel) version 
of the EPIC algorithm is investigated for landmine 
detection. Denoted dual-channel EPIC (DEPIC), it 
measures the interference on the secondary channel 
and subtracts the estimated values from the primary 
channel. 

Hemnani et al. investigate in [41], two adaptive 
filtering techniques, ANC and adaptive line 
enhancement (ALE), together with wavelet transform, 
showing that ALE enables better and faster detection. 

In [42] a new algorithm is developed to detect the 
NQR signal in case of severe interference, without 
requiring secondary data for obtaining prior 
knowledge about the RFI. The interference cancelation 
ETAML (ICETAML) method firstly cancels 
interference in the acquired data, then applies the 
ETAML algorithm. It is shown to have excellent 
performance [42]. The frequency selective version 
(ICFETAML) is also investigated and it is shown that 
it has no advantages over ICETAML. 

A different approach is researched in [43], where 
neural networks (NN) are used to detect the sNQR 
response. Several algorithms are investigated: AML, 
FSAML and feedforward NN. The later was shown to 
have good performance if the NQR response 
parameters are within certain ranges. 

NQR signal pattern recognition is investigated in 
[3], for ammonium nitrate landmine detection. Several 
signal features are extracted from the response: 
spectral magnitude at reference frequency, sum of 
spectral intensities in the frequency ranges of interest, 
frequency of the highest peak in the frequency range 
of interest, frequency and spectral intensity of the peak 
closer to the reference frequency and others. These are 
fed to a classifier to produce the detection result. The 
following classifiers are studied: naïve Bayes, k-
nearest neighbors (k-NN), support vector machine 
(SVM), 2-layer neural network and a combination of 
the previous ones. 

C. Future Research 

Future research could focus on better spectral 
estimation techniques, more appropriate to real 
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applications, as well as machine learning (ML) 
techniques for signal analysis. 

ML is currently a very active research topic which 
finds applications in multiple domains. According to 
ScienceDirect, thousands of articles on ML have been 
published in the last few years, as follows: 2013 
(8643), 2014 (9936), 2015 (12398), 2016 (13770), 
2017 (16082) [46]. As observed, the topic is heavily 
researched and the interest for it is rising yearly. 

There are tens of algorithms developed for ML, the 
most efficient being those with deep architectures 
(deep learning techniques): deep neural networks 
(DNN), deep belief networks (DBN), autoencoders, 
convolutional neural networks (CNN), recurrent neural 
networks (RNN) and others [48]. New and more 
performant algorithms appear every year, some of the 
most notable being: LeNet, AlexNet, VGG, 
GoogLeNet, ResNet [47]. E.g., the latter has achieved 
better image recognition than a human expert [47]. 

Machine learning (deep learning) offers many 
advantages, such as new features generation and 
unsupervised learning [51]. In particular, it is useful 
for analyzing signals in low SNR scenarios, as it is the 
case for NQR, and it has been shown to perform well 
in signal recognition applications [49].  

ML was approached in NQR [3], but the 
algorithms used represent only a subset of it and have 
been replaced by recent proposals, as mentioned 
above. The fusion of several algorithms together with 
better feature extraction techniques can provide very 
good results in NQR signal analysis. In [45] a machine 
learning solution was developed for NMR. Although it 
is not applied in NQR, a similar approach can be 
developed here also. 

CONCLUSION 

In this paper, the NQR principle was described, as 
well as its applications. The detection methods were 
presented, classified in direct and indirect methods. 
The challenges that signal processing algorithms must 
overcome have been stated and the algorithms were 
described, classified in pre- and post-processing 
methods. These were presented in a chronological 
order, starting from the techniques initially used up to 
state-of-the-art detection algorithms. Their principles, 
advantages and disadvantages are discussed. 

As seen, the first detectors were FFT-based. A 
major contribution was given by the use of the 
adaptive noise cancellation algorithms for RFI 
mitigation. Another step further was made by the use 
of spectral estimation techniques complementary to 
the aforementioned algorithms. The spectral 
estimation detectors offered the advantage of detection 
in cases were the spectral peak is covered by noise, 
whereas the first detectors could only identify the 
response signal if the peak rose from the noise floor. 
Another major contribution was the use of pattern 
recognition techniques for signal detection. Coupled 
with efficient features extraction and other signal 
processing techniques (e.g., wavelet transform, 
spectral estimation), these can provide good results in 
severe RFI conditions. 

Finally, an analysis on future research 
opportunities is presented and several directions are 
proposed. Machine learning has not been properly 
investigated in the field of NQR signal analysis and it 
is suggested as a next research step. 
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