A Decoupled Digital Feedback Control Architecture for Input-Delay Robotic Servomechanisms: Design and Simulation

Charles Hubert KOM

Abstract


This paper presents a decoupled feedback control architecture, for input-delay robotic servomechanisms. The decoupling principle relies on the fact that, any servomechanism is modeled by an input-delay dynamic model. However, the coupling effect from the motion of other servomechanisms, acts as an unknown and bounded disturbance to be rejected by a robust digital PIDF (proportional derivative, integral with filer) controller. As a beneficial implication, the proposed digital feedback control architecture, is designed and simulated according to methodologies and tools available in the literature of siso (single-input single-output) input-delay control servo-systems.  Simulation results obtained from prototyping servomechanisms are presented and discussed. These results show the high precision and robustness, of the proposed decoupling digital feedback control architecture. In future research works, the software code of digital PIDF controllers, will be implemented and uploaded into a DSP (digital signal processing) target, e.g., FPGA chip, for digital control of real input-delay robotic servomechanisms.


Full Text:

PDF

References


N. Herencsar, A. Kartci, J. Koton, R. Sotner, B. B. Alagoz, and C. Yeroglu, « Analogue Implementation of a Fractional-PIλ Controller for DC Motor Speed Control », in 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), 2019, p. 467‑472.

B. Hekimoğlu, « Optimal Tuning of Fractional Order PID Controller for DC Motor Speed Control via Chaotic Atom Search Optimization Algorithm », IEEE Access, vol. 7, p. 38100, 38114, 2019.

H. S. Purnama, T. Sutikno, S. Alavandar, et A. C. Subrata, « Intelligent Control Strategies for Tuning PID of Speed Control of DC Motor - A Review », in 2019 IEEE Conference on Energy Conversion (CENCON), 2019, p. 24‑30.

Mus Alparslan University et T. Abut, « Modeling and Optimal Control of a DC Motor », Int. J. Eng. Trends Technol., vol. 32, no 3, p. 146‑150, févr. 2016.

A. H. O. Ahmed, « Optimal Speed Control for Direct Current Motors Using Linear Quadratic Regulator », J. Sci. Technol., vol. 14, no 2, p. 9, 2013.

S. Madanzadeh, A. Abedini, A. Radan, et J.-S. Ro, « Application of quadratic linearization state feedback control with hysteresis reference reformer to improve the dynamic response of interior permanent magnet synchronous motors », ISA Trans., sept. 2019.

S. S. Ahmad et G. Narayanan, « Linearized Modeling of Switched Reluctance Motor for Closed-Loop Current Control », IEEE Trans. Ind. Appl., vol. 52, no 4, p. 3146‑3158, juill. 2016.

Y. Yan, J. Yang, Z. Sun, S. Li, et H. Yu, « Non-linear-disturbance-observer-enhanced MPC for motion control systems with multiple disturbances », IET Control Theory Amp Appl., vol. 14, no 1, p. 63‑72, sept. 2019.

G. Cheng, « Combined linear and non-linear controller design for motor position regulation », Electron. Lett., vol. 54, no 5, p. 288‑289, janv. 2018.

M. A. Asker, K. S. Gaeid, N. N. Tawfeeq, H. K. Zain, A. I. Kauther, et T. Q. Abdullah, « Design and Analysis of Robot PID Controller Using Digital Signal Processing Techniques », Int. J. Eng. Technol., vol. 7, no 4.37, p. 103–109, 2018.

M. S. Zaky, « A self-tuning PI controller for the speed control of electrical motor drives », Electr. Power Syst. Res., vol. 119, p. 293‑303, févr. 2015.

C.-T. Chao, N. Sutarna, J.-S. Chiou, et C.-J. Wang, « An Optimal Fuzzy PID Controller Design Based on Conventional PID Control and Nonlinear Factors », Appl. Sci., vol. 9, no 6, p. 1224, janv. 2019.

A. A. El-samahy et M. A. Shamseldin, « Brushless DC motor tracking control using self-tuning fuzzy PID control and model reference adaptive control », Ain Shams Eng. J., vol. 9, no 3, p. 341‑352, sept. 2018.

G. Y. Chen et J. Perng, « PI speed controller design based on GA with time delay for BLDC motor using DSP », in 2017 IEEE International Conference on Mechatronics and Automation (ICMA), 2017, p. 1174‑1179.

S. Aslam, S. Hannan, U. Sajjad, et W. Zafar, « Implementation of PID on PIC24F series microcontroller for speed control of a DC motor using MPLAB and Proteus », Adv. Sci. Technol. Res. J., vol. Vol. 10, no nr 31, 2016.

I. Klimo, P. Drahoš, et M. Kocúr, « PI controller implementation based on FPGA », in 2018 Cybernetics Informatics (K I), 2018, p. 1‑6.

J. Mbihi, « A flexible multimedia workbench for digital control of input-delay servo systems », J. Comput. Sci. Control Syst., vol. 8, no 2, p. 35, 2015.

N. Yeganefar, « Définitions et analyse de stabilités pour les systèmes à retard non linéaires », PhD thesis, Ecole Centrale de Lille ; Université des Sciences et Technologie de Lille - Lille I, 2006.

[19] M. Talha et I. A. Makda, « Frequency-Domain Modeling and Tustin Discretization Method based Controlling of DC Step-Up Chopper », in 2019 4th International Conference on Power Electronics and their Applications (ICPEA), Elazig, Turkey, sept. 2019, p. 1 - 5.

Y. Chen, M. Yang, D. Xu, et F. Blaabjerg, « A Novel Frequency Characteristic Model and Noise Shaping Method for Encoder-Based Speed Measurement in Motor Drive », in 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia), mai 2019, p. 1‑6.

J. Mbihi, « A New PC-Based Workbench for Virtual Instrumentation and Automatic Control Using Matlab GUI/MEX-C++ Application », WSEAS Trans. Adv. Eng. Educ., vol. 12, p. 52–62, 2015.

A. H., M. H. Al Shamisi, et H. A. N. Hejase, « MATLAB GUI Application for Teaching Electronics », in Engineering Education and Research Using MATLAB, A. Assi, Éd. InTech, 2011.

C. Chhlonh, D. C. Riawan, et H. Suryoatmojo, « Modeling and Simulation of Independent Speed Steering Control for Front In-wheel in EV Using BLDC Motor in MATLAB GUI », in 2019 International Seminar on Intelligent Technology and Its Applications (ISITIA), août 2019, p. 270 - 275.

V. Kumar et M. Mittal, « Optimal speed control of DC servomotor in the presence of disturbance and noise using stochastic algorithm », in 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), avr. 2019, p. 396 - 400.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Journal of Electrical Engineering, Electronics, Control and Computer Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.